Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 58
1.
Int J Mol Sci ; 25(6)2024 Mar 21.
Article En | MEDLINE | ID: mdl-38542520

Injuries and subclinical effects from exposure to blasts are of significant concern in military operational settings, including tactical training, and are associated with self-reported concussion-like symptomology and physiological changes such as increased intestinal permeability (IP), which was investigated in this study. Time-series gene expression and IP biomarker data were generated from "breachers" exposed to controlled, low-level explosive blast during training. Samples from 30 male participants at pre-, post-, and follow-up blast exposure the next day were assayed via RNA-seq and ELISA. A battery of symptom data was also collected at each of these time points that acutely showed elevated symptom reporting related to headache, concentration, dizziness, and taking longer to think, dissipating ~16 h following blast exposure. Evidence for bacterial translocation into circulation following blast exposure was detected by significant stepwise increase in microbial diversity (measured via alpha-diversity p = 0.049). Alterations in levels of IP protein biomarkers (i.e., Zonulin, LBP, Claudin-3, I-FABP) assessed in a subset of these participants (n = 23) further evidenced blast exposure associates with IP. The observed symptom profile was consistent with mild traumatic brain injury and was further associated with changes in bacterial translocation and intestinal permeability, suggesting that IP may be linked to a decrease in cognitive functioning. These preliminary findings show for the first time within real-world military operational settings that exposures to blast can contribute to IP.


Blast Injuries , Brain Concussion , Military Personnel , Humans , Male , Military Personnel/psychology , Intestinal Barrier Function , Blast Injuries/complications , Brain Concussion/complications , Biomarkers
2.
Nat Neurosci ; 27(5): 873-885, 2024 May.
Article En | MEDLINE | ID: mdl-38539014

Human genetics implicate defective myeloid responses in the development of late-onset Alzheimer disease. A decline in peripheral and brain myeloid metabolism, triggering maladaptive immune responses, is a feature of aging. The role of TREM1, a pro-inflammatory factor, in neurodegenerative diseases is unclear. Here we show that Trem1 deficiency prevents age-dependent changes in myeloid metabolism, inflammation and hippocampal memory function in mice. Trem1 deficiency rescues age-associated declines in ribose 5-phosphate. In vitro, Trem1-deficient microglia are resistant to amyloid-ß42 oligomer-induced bioenergetic changes, suggesting that amyloid-ß42 oligomer stimulation disrupts homeostatic microglial metabolism and immune function via TREM1. In the 5XFAD mouse model, Trem1 haploinsufficiency prevents spatial memory loss, preserves homeostatic microglial morphology, and reduces neuritic dystrophy and changes in the disease-associated microglial transcriptomic signature. In aging APPSwe mice, Trem1 deficiency prevents hippocampal memory decline while restoring synaptic mitochondrial function and cerebral glucose uptake. In postmortem Alzheimer disease brain, TREM1 colocalizes with Iba1+ cells around amyloid plaques and its expression is associated with Alzheimer disease clinical and neuropathological severity. Our results suggest that TREM1 promotes cognitive decline in aging and in the context of amyloid pathology.


Aging , Alzheimer Disease , Disease Models, Animal , Energy Metabolism , Microglia , Triggering Receptor Expressed on Myeloid Cells-1 , Animals , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Alzheimer Disease/genetics , Aging/metabolism , Triggering Receptor Expressed on Myeloid Cells-1/metabolism , Triggering Receptor Expressed on Myeloid Cells-1/genetics , Mice , Energy Metabolism/physiology , Microglia/metabolism , Mice, Transgenic , Amyloid beta-Peptides/metabolism , Cognition/physiology , Humans , Male , Hippocampus/metabolism , Hippocampus/pathology , Mice, Inbred C57BL
3.
Mol Psychiatry ; 2024 Jan 26.
Article En | MEDLINE | ID: mdl-38278992

Human genetic studies indicate that suicidal ideation and behavior are both heritable. Most studies have examined associations between aberrant gene expression and suicide behavior, but behavior risk is linked to the severity of suicidal ideation. Through a gene network approach, this study investigates how gene co-expression patterns are associated with suicidal ideation and severity using RNA-seq data in peripheral blood from 46 live participants with elevated suicidal ideation and 46 with no ideation. Associations with the presence of suicidal ideation were found within 18 co-expressed modules (p < 0.05), as well as in 3 co-expressed modules associated with suicidal ideation severity (p < 0.05, not explained by severity of depression). Suicidal ideation presence and severity-related gene modules with enrichment of genes involved in defense against microbial infection, inflammation, and adaptive immune response were identified and investigated using RNA-seq data from postmortem brain that revealed gene expression differences with moderate effect sizes in suicide decedents vs. non-suicides in white matter, but not gray matter. Findings support a role of brain and peripheral blood inflammation in suicide risk, showing that suicidal ideation presence and severity are associated with an inflammatory signature detectable in blood and brain, indicating a biological continuity between ideation and suicidal behavior that may underlie a common heritability.

4.
Pharmaceuticals (Basel) ; 16(11)2023 Oct 25.
Article En | MEDLINE | ID: mdl-38004382

Stroke is the second leading cause of death and the third leading cause of disability worldwide, with limited treatment options [...].

5.
Polymers (Basel) ; 15(20)2023 Oct 19.
Article En | MEDLINE | ID: mdl-37896397

This work aimed to investigate the CO2 gas barrier and mechanical properties of fluorine rubber nanocomposites filled with Ca/Al layered hydroxide (graphene oxide [GO]/LDH-Ca2Al) modified by GO. GO/LDH-Ca2Al nanocomposite fillers were prepared by depositing Ca/Al layered hydroxide (LDH-Ca2Al) into the surface of alkalized GO (Al-GO). The prepared GO/LDH-Ca2Al nanocomposite fillers and complexes were characterized by Fourier infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) for structural and micromorphological characterization. The results showed that GO/LDH-Ca2Al was successfully prepared with strong interactions between Al-GO and LDH, and the compatibility of GO/LDH-Ca2Al nanocomposite fillers with the polymer was significantly improved compared with that of LDH-Ca2Al. Consequently, both the fracture strength (σb) and strain (εb) of GO/LDH-Ca2Al nanocomplexes remarkably increased, and they exhibited excellent mechanical properties. Differential scanning calorimetry and thermogravimetric analysis were used to characterize the thermal stability of GO/LDH-Ca2Al nanocomposite fillers, and GO/LDH-Ca2Al nanocomposite fillers have better thermal stability than LDH-Ca2Al. The reaction products (S-LDH-Ca2Al and S-GO-Ca2Al) of LDH-Ca2Al and GO/LDH-Ca2Al with CO2 were characterized using XRD and TGA, respectively, and the results show that LDH-Ca2Al reacts readily and chemically with CO2, resulting in a lower diffusion coefficient of CO2 in the LDH-Ca2Al nanocomplexes than that of the GO/LDH-Ca2Al nanocomplexes and leading to the destruction of the laminar structure of LDH-Ca2Al, while GO/LDH-Ca2Al has better CO2 resistance stability. GO/LDH-Ca2Al nanocomplexes exhibited a reduced content of hydroxyl groups with pro-CO2 nature exposed on the surface of LDH-Ca2Al, improving the interfacial interaction between the nanofillers and the rubber matrix and enhancing the dispersion of GO/LDH-Ca2Al in the polymers. Moreover, CO2 in the soluble GO/LDH-Ca2Al nanocomposites was significantly reduced, while the diffusion properties demonstrated weak temperature dependence on solubility. The mechanism of the CO2 gas barrier of polymers filled with GO/LDH-Ca2Al was proposed on the basis of the Arrhenius equation.

6.
Langmuir ; 39(38): 13493-13502, 2023 Sep 26.
Article En | MEDLINE | ID: mdl-37699430

In order to meet the advanced requirements of the manufacturing industry, the use of water-based cutting fluids (WCFs) in metal processing is gradually increasing. However, their lubrication performance still needs to be improved considerably. Therefore, new multifunctional molybdenum disulfide nanoparticles (m-MoS2 NPs) were developed to improve the lubricating properties of WCFs. M-MoS2 NPs modified with silver nanoparticles were prepared by an in situ surface modification. The morphology and chemical composition of the m-MoS2 NPs were characterized by scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HR-TEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). Furthermore, the dispersion and bactericidal properties of m-MoS2 NPs with different weight percents in WCFs were also studied experimentally. The effect of m-MoS2 NPs concentration on friction properties and their friction mechanism were investigated in this research. The results revealed that the prepared m-MoS2 NPs were all nanoscale particles with a layered structure. The dispersion and bactericidal properties of m-MoS2 NPs in WCFs were better than those of MoS2 NPs. The best dispersion and bactericidal properties were observed with 1 wt % MoS2 NPs, as well as friction reduction and antiwear properties. During friction, the two friction surfaces were in the boundary lubrication state,and the prepared m-MoS2 NPs entered the friction contact zone along with the WCFs. A friction chemical reaction film rich in MoS2 and Ag NPs was formed on the friction surface to fill and repair the worn surface, exerting a good lubrication effect.

7.
Res Sq ; 2023 Jun 01.
Article En | MEDLINE | ID: mdl-37398042

Human genetic studies indicate that suicidal ideation and behavior are both heritable. Most studies have examined associations between aberrant gene expression and suicide behavior, but behavior risk is linked to severity of suicidal ideation. Through a gene network approach, this study investigates how gene co-expression patterns are associated with suicidal ideation and severity using RNA-seq data in peripheral blood from 46 live participants with elevated suicidal ideation and 46 with no ideation. Associations with presence and severity of suicidal ideation were found within 18 and 3 co-expressed modules respectively (p < 0.05), not explained by severity of depression. Suicidal ideation presence and severity-related gene modules with enrichment of genes involved in defense against microbial infection, inflammation, and adaptive immune response were identified, and tested using RNA-seq data from postmortem brain that revealed gene expression differences in suicide decedents vs. non-suicides in white matter, but not gray matter. Findings support a role of brain and peripheral blood inflammation in suicide risk, showing that suicidal ideation presence and severity is associated with an inflammatory signature detectable in blood and brain, indicating a biological continuity between ideation and suicidal behavior that may underlie a common heritability.

8.
Proc Natl Acad Sci U S A ; 120(19): e2221740120, 2023 May 09.
Article En | MEDLINE | ID: mdl-37126707

Biological systems convert chemical energy into mechanical work by using protein catalysts that assume kinetically controlled conformational states. Synthetic chemomechanical systems using chemical catalysis have been reported, but they are slow, require high temperatures to operate, or indirectly perform work by harnessing reaction products in liquids (e.g., heat or protons). Here, we introduce a bioinspired chemical strategy for gas-phase chemomechanical transduction that sequences the elementary steps of catalytic reactions on ultrathin (<10 nm) platinum sheets to generate surface stresses that directly drive microactuation (bending radii of 700 nm) at ambient conditions (T = 20 °C; Ptotal = 1 atm). When fueled by hydrogen gas and either oxygen or ozone gas, we show how kinetically controlled surface states of the catalyst can be exploited to achieve fast actuation (600 ms/cycle) at 20 °C. We also show that the approach can integrate photochemically controlled reactions and can be used to drive the reconfiguration of microhinges and complex origami- and kirigami-based microstructures.

10.
Sci Robot ; 7(70): eabq2296, 2022 09 21.
Article En | MEDLINE | ID: mdl-36129993

Autonomous robots-systems where mechanical actuators are guided through a series of states by information processing units to perform a predesigned function-are expected to revolutionize everything from health care to transportation. Microscopic robots are poised for a similar revolution in fields from medicine to environmental remediation. A key hurdle to developing these microscopic robots is the integration of information systems, particularly electronics fabricated at commercial foundries, with microactuators. Here, we develop such an integration process and build microscopic robots controlled by onboard complementary metal oxide semiconductor electronics. The resulting autonomous, untethered robots are 100 to 250 micrometers in size, are powered by light, and walk at speeds greater than 10 micrometers per second. In addition, we demonstrate a microscopic robot that can respond to an optical command. This work paves the way for ubiquitous autonomous microscopic robots that perform complex functions, respond to their environments, and communicate with the outside world.


Robotics , Oxides
11.
Nature ; 605(7911): 681-686, 2022 05.
Article En | MEDLINE | ID: mdl-35614247

Cilial pumping is a powerful strategy used by biological organisms to control and manipulate fluids at the microscale. However, despite numerous recent advances in optically, magnetically and electrically driven actuation, development of an engineered cilial platform with the potential for applications has remained difficult to realize1-6. Here we report on active metasurfaces of electronically actuated artificial cilia that can create arbitrary flow patterns in liquids near a surface. We first create voltage-actuated cilia that generate non-reciprocal motions to drive surface flows at tens of microns per second at actuation voltages of 1 volt. We then show that a cilia unit cell can locally create a range of elemental flow geometries. By combining these unit cells, we create an active cilia metasurface that can generate and switch between any desired surface flow pattern. Finally, we integrate the cilia with a light-powered complementary metal-oxide-semiconductor (CMOS) clock circuit to demonstrate wireless operation. As a proof of concept, we use this circuit to output voltage pulses with various phase delays to demonstrate improved pumping efficiency using metachronal waves. These powerful results, demonstrated experimentally and confirmed using theoretical computations, illustrate a pathway towards fine-scale microfluidic manipulation, with applications from microfluidic pumping to microrobotic locomotion.

12.
Biol Psychiatry ; 91(6): 572-581, 2022 03 15.
Article En | MEDLINE | ID: mdl-35027166

BACKGROUND: Transcriptome studies have revealed age-, disease-, and region-associated microglial phenotypes reflecting changes in microglial function during development, aging, central nervous system homeostasis, and pathology. The molecular mechanisms that contribute to these transcriptomic changes are largely unknown. The aim of this study was to characterize the DNA methylation landscape of human microglia and the factors that contribute to variations in the microglia methylome. We hypothesized that both age and brain region would have a large impact on DNA methylation in microglia. METHODS: Microglia from postmortem brain tissue of four different brain regions of 22 donors, encompassing 1 patient with schizophrenia, 13 patients with mood disorder pathology, and 8 control subjects, were isolated and assayed using a genome-wide methylation array. RESULTS: We found that human microglial cells have a methylation profile distinct from bulk brain tissue and neurons, and age explained a considerable part of the variation. Additionally, we showed that interindividual factors had a much larger effect on the methylation landscape of microglia than brain region, which was also seen at the transcriptome level. In our exploratory analysis, we found various differentially methylated regions that were related to disease status (mood disorder vs. control). This included differentially methylated regions that are linked to gene expression in microglia, as well as to myeloid cell function or neuropsychiatric disorders. CONCLUSIONS: Although based on relatively small samples, these findings suggest that the methylation profile of microglia is responsive to interindividual variations and thereby plays an important role in the heterogeneity of microglia observed at the transcriptome level.


Epigenome , Microglia , Brain/metabolism , DNA Methylation , Humans , Microglia/metabolism , Mood Disorders/genetics , Transcriptome
13.
Neuroscience ; 481: 144-155, 2022 01 15.
Article En | MEDLINE | ID: mdl-34843893

Electroencephalogram (EEG)-based quantitative pain measurement is valuable in the field of clinical pain treatment, providing objective pain intensity assessment especially for nonverbal patients who are unable to self-report. At present, a key challenge in modeling pain events from EEG is to find invariant representations for intra- and inter-subject variations, where current methods based on hand-crafted features cannot provide satisfactory results. Hence, we propose a novel method based on deep learning to learn such invariant representations from multi-channel EEG signals and demonstrate its great advantages in EEG-based pain classification tasks. To begin, instead of using typical EEG analysis techniques that ignore spatial information of EEG, we convert raw EEG signals into a sequence of multi-spectral topography maps (topology-preserving EEG images). Next, inspired by various deep learning techniques applied in neuroimaging domain, a deep Attentive-Recurrent-Convolutional Neural Network (ARCNN) is proposed here to learn spatial-spectral-temporal representations from EEG images. The proposed method aims to jointly preserve the spatial-spectral-temporal structures of EEG, for learning representations with high robustness against intra-subject and inter-subject variations, making it more conducive to multi-class and subject-independent scenarios. Empirical evaluation on 4-level pain intensity assessment within the subject-independent scenario demonstrated significant improvement over baseline and state-of-the-art methods in this field. Our approach applies deep neural networks (DNNs) to pain intensity assessment for the first time and demonstrates its potential advantages in modeling pain events from EEG.


Electroencephalography , Neural Networks, Computer , Attention , Electroencephalography/methods , Humans , Pain Measurement
14.
ACS Appl Mater Interfaces ; 13(44): 53143-53154, 2021 Nov 10.
Article En | MEDLINE | ID: mdl-34711053

Evaporative self-assembly of noble metal nanoparticles into ordered structures holds great promise for fabricating optical and plasmonic devices by virtue of its low cost, high efficiency, and ease of operation. However, poor control of Marangoni flows is one of the challenges accounting for realizing a well-defined assembly. Herein, based on the theoretical analysis of the influence of evaporative intensity on the assembly, two simple but reliable flow-field-confinement platforms are designed to control the evaporative microflows and to work concurrently with depletion forces to enable the regulated self-assembly of gold nanorods. Orientationally ordered assemblies are realized by the designed strong unidirectional microflow in a capillary, and a device-scale assembly of monolayer membrane is obtained by the created weak convection in homemade glass cells. Morphologically diversified superstructure assemblies, such as spherulite-like, boundary-twisted, chiral spiral assemblies, and merging membranes with a π-twisted domain wall, are obtained due to the spontaneous symmetry breaking or in the presence of defects, such as surface steps and screw dislocations. Optical anisotropy and polarization-dependent behaviors of these assemblies are further revealed, implying the potential applications in plasmonic coupling devices and optoelectronic components. An understanding of the entropy-driven assembly behaviors and control of evaporative microflows to guide the self-assembly of gold nanorods provides insights into the general bottom-up approach that is helpful for constructing complex yet robust nanosuperstructures.

15.
Front Immunol ; 12: 617032, 2021.
Article En | MEDLINE | ID: mdl-34194419

Stroke is a multiphasic process, and the initial ischemic phase of neuronal damage is followed by secondary innate and adaptive responses that unfold over days after stroke, offer a longer time frame of intervention, and represent a novel therapeutic target. Therefore, revealing the distinct functions of immune cells in both brain and periphery is important for identification of immunotherapeutic targets for stroke to extend the treatment time window. In this paper an examination of the cellular dynamics of the immune response in the central nervous system (CNS) and periphery provoked by cerebral ischemia is provided. New data is presented for the number of immune cells in brain and spleen of mice during the 7 days following middle cerebral artery occlusion (MCAO). A novel analysis of the correlation among various cell types in the brain and spleen following stroke is presented. It is found that the infiltrated macrophages in the ischemic hemisphere positively correlate with neutrophils which implies their synergic effect in migrating into the brain after stroke onset. It is noted that during infiltration of adaptive immune cells, the number of neutrophils correlate positively with T cells, which suggests neutrophils contribute to T cell infiltration in the stroked brain. Furthermore, the correlation among neurological deficit and various immune cells suggests that microglia and splenic adaptive immune cells (T and B cells) are protective while infiltrating peripheral myeloid cells (macrophage and neutrophils) worsen stroke outcome. Comprehension of such immune responses post cerebral ischemia is crucial for differentiating the drivers of outcomes and also predicting the stroke outcome.


Brain Ischemia/immunology , Brain/immunology , Infarction, Middle Cerebral Artery/immunology , Macrophages/immunology , Neutrophils/immunology , Spleen/immunology , T-Lymphocytes/immunology , Animals , Brain/pathology , Cell Movement , Disease Models, Animal , Humans , Immunity, Cellular , Mice , Mice, Inbred C57BL , Neuroimmunomodulation , Spleen/pathology
16.
Sci Robot ; 6(52)2021 03 17.
Article En | MEDLINE | ID: mdl-34043551

Shape-memory actuators allow machines ranging from robots to medical implants to hold their form without continuous power, a feature especially advantageous for situations where these devices are untethered and power is limited. Although previous work has demonstrated shape-memory actuators using polymers, alloys, and ceramics, the need for micrometer-scale electro-shape-memory actuators remains largely unmet, especially ones that can be driven by standard electronics (~1 volt). Here, we report on a new class of fast, high-curvature, low-voltage, reconfigurable, micrometer-scale shape-memory actuators. They function by the electrochemical oxidation/reduction of a platinum surface, creating a strain in the oxidized layer that causes bending. They bend to the smallest radius of curvature of any electrically controlled microactuator (~500 nanometers), are fast (<100-millisecond operation), and operate inside the electrochemical window of water, avoiding bubble generation associated with oxygen evolution. We demonstrate that these shape-memory actuators can be used to create basic electrically reconfigurable microscale robot elements including actuating surfaces, origami-based three-dimensional shapes, morphing metamaterials, and mechanical memory elements. Our shape-memory actuators have the potential to enable the realization of adaptive microscale structures, bio-implantable devices, and microscopic robots.


Robotics/instrumentation , Smart Materials , Electricity , Electrochemical Techniques , Equipment Design , Humans , Mechanical Phenomena , Microtechnology , Oxidation-Reduction , Platinum/chemistry , Smart Materials/chemistry
17.
Opt Express ; 28(23): 34237-34245, 2020 Nov 09.
Article En | MEDLINE | ID: mdl-33182897

Assembly of plasmonic nanomaterials into a low refractive index medium, such as an aerogel, holds a great promise for optical metamaterials, optical sensors, and photothermal energy converters. However, conventional plasmonic aerogels are opaque and optically isotropic composites, impeding them from being used as low-loss or polarization-dependent optical materials. Here we demonstrate a plasmonic-cellulose nanofiber composite aerogel that comprises of well-dispersed gold nanorods within a cellulose nanofiber network. The cellulose aerogel host is highly transparent owing to the small scattering cross-section of the nanofibers and forms a nematic liquid crystalline medium with strong optical birefringence. We find that the longitudinal surface plasmon resonance peak of gold nanorods shows a dramatic shift when probed for the cellulose aerogel compared with the wet gels. Simulations reveal the shift of surface plasmon resonance peak with gel drying can be attributed to the change of the effective refractive index of the gels. This composite material may provide a platform for three- dimensional plasmonic devices ranging from optical sensors to metamaterials.

18.
Nature ; 584(7822): 557-561, 2020 08.
Article En | MEDLINE | ID: mdl-32848225

Fifty years of Moore's law scaling in microelectronics have brought remarkable opportunities for the rapidly evolving field of microscopic robotics1-5. Electronic, magnetic and optical systems now offer an unprecedented combination of complexity, small size and low cost6,7, and could be readily appropriated for robots that are smaller than the resolution limit of human vision (less than a hundred micrometres)8-11. However, a major roadblock exists: there is no micrometre-scale actuator system that seamlessly integrates with semiconductor processing and responds to standard electronic control signals. Here we overcome this barrier by developing a new class of voltage-controllable electrochemical actuators that operate at low voltages (200 microvolts), low power (10 nanowatts) and are completely compatible with silicon processing. To demonstrate their potential, we develop lithographic fabrication-and-release protocols to prototype sub-hundred-micrometre walking robots. Every step in this process is performed in parallel, allowing us to produce over one million robots per four-inch wafer. These results are an important advance towards mass-manufactured, silicon-based, functional robots that are too small to be resolved by the naked eye.

19.
ACS Appl Mater Interfaces ; 12(30): 34115-34121, 2020 Jul 29.
Article En | MEDLINE | ID: mdl-32615033

Improving building energy performance requires the development of new highly insulative materials. An affordable retrofitting solution comprising a thin film could improve the resistance to heat flow in both residential and commercial buildings and reduce overall energy consumption. Here, we propose cellulose aerogel films formed from pellicles produced by the bacteria Gluconacetobacter hansenii as insulation materials. We studied the impact of the density and nanostructure on the aerogels' thermal properties. A thermal conductivity as low as 13 mW/(K·m) was measured for native pellicle-based aerogels that were dried as-is with minimal post-treatment. The use of waste from the beer brewing industry as a solution to grow the pellicle maintained the cellulose yield obtained with standard Hestrin-Schramm media, making our product more affordable and sustainable. In the future, our work can be extended through further diversification of food wastes as the substrate sources, facilitating higher potential production and larger applications.


Acetobacteraceae/metabolism , Cellulose/chemistry , Gels/chemistry , Carbon Dioxide/chemistry , Nanostructures/chemistry , Thermal Conductivity
20.
Opt Express ; 28(4): 5459-5469, 2020 Feb 17.
Article En | MEDLINE | ID: mdl-32121766

We study the plasmon-enhanced fluorescence of a single semiconducting quantum dot near the apex of a colloidal gold pyramid spatially localized by the elastic forces of the liquid crystal host. The gold pyramid particles were manipulated within the liquid crystal medium by laser tweezers, enabling the self-assembly of a semiconducting quantum dot dispersed in the medium near the apex of the gold pyramid, allowing us to probe the plasmon-exciton interactions. We demonstrate the effect of plasmon coupling on the fluorescence lifetime and the blinking properties of the quantum dot. Our results demonstrate that topological defects around colloidal particles in liquid crystal combined with laser tweezers provide a platform for plasmon exciton interaction studies and potentially could be extended to the scale of composite materials for nanophotonic applications.

...