Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 197
1.
Food Chem ; 455: 139898, 2024 May 29.
Article En | MEDLINE | ID: mdl-38823123

Chimonanthus praecox (L.) Link kernel oil (LMO) has the potential to expand the variety of nutraceutical plant oils available and provide support for the application of functional food. This study aimed to assess the edible potential of LMO by examining its physicochemical characteristics, digestion behaviors, and nutraceutical properties. The results revealed that LMO has a high oil content of 40.84% and is particularly rich in linoleic acid (53.37-56.30%), oleic acid (22.04-25.08%) and triacylglycerol (TAG) of linoleic acid -palmitoleic acid- oleic acid (10.57-12.70%). The quality characteristics and phytochemical composition of LMO were found to be influenced by variety and extraction methods used. In simulated in vitro digestion tests, LMO showed a better lipid release rate and degree. Animal studies further demonstrated that LMO led to better TAG and cholesterol excretion compared to soybean oil and camellia oleifera oil. Overall, this study highlights the potential of LMO as a high-quality edible oil.

2.
IEEE Trans Cybern ; PP2024 May 22.
Article En | MEDLINE | ID: mdl-38776193

Fault-tolerant control (FTC) is vital for the safety and reliability of automatic systems. Most of the existing FTC methods are developed for open-loop systems subject to additive faults, regardless of the widely present control loops and multiplicative faults within systems. In this article, a performance-based FTC strategy is proposed for the closed-loop systems with multiplicative faults. Considering the high efforts in modeling complex systems, the proposed FTC strategy is realized in the data-driven context. Specifically, a nominal feedback-feedforward controller is first established for the fault-free systems. By selecting the system stability and reference tracking behavior as the key performance indices, two performance evaluators are constructed to detect and classify the occurred multiplicative faults based on the fault-induced effects on the system performance. Then, with the aid of the coprime factorization technique, the multiplicative faults, in the form of additive perturbations to the system coprime factors, are estimated utilizing the closed-loop process data. Furthermore, based on the fault knowledge, a hierarchical fault-tolerant tracking controller is developed according to the levels of system performance degradations, where the functional controller parameters are reconfigured with different priorities. Finally, case studies are provided to validate the effectiveness of the proposed method.

3.
Brief Bioinform ; 25(3)2024 Mar 27.
Article En | MEDLINE | ID: mdl-38701415

N4-acetylcytidine (ac4C) is a modification found in ribonucleic acid (RNA) related to diseases. Expensive and labor-intensive methods hindered the exploration of ac4C mechanisms and the development of specific anti-ac4C drugs. Therefore, an advanced prediction model for ac4C in RNA is urgently needed. Despite the construction of various prediction models, several limitations exist: (1) insufficient resolution at base level for ac4C sites; (2) lack of information on species other than Homo sapiens; (3) lack of information on RNA other than mRNA; and (4) lack of interpretation for each prediction. In light of these limitations, we have reconstructed the previous benchmark dataset and introduced a new dataset including balanced RNA sequences from multiple species and RNA types, while also providing base-level resolution for ac4C sites. Additionally, we have proposed a novel transformer-based architecture and pipeline for predicting ac4C sites, allowing for highly accurate predictions, visually interpretable results and no restrictions on the length of input RNA sequences. Statistically, our work has improved the accuracy of predicting specific ac4C sites in multiple species from less than 40% to around 85%, achieving a high AUC > 0.9. These results significantly surpass the performance of all existing models.


Cytidine , Cytidine/analogs & derivatives , RNA , Cytidine/genetics , RNA/genetics , RNA/chemistry , Humans , Computational Biology/methods , Animals , Software , Algorithms
4.
Front Physiol ; 15: 1343219, 2024.
Article En | MEDLINE | ID: mdl-38737829

Introduction: Exercise, health, and the gut microbiota (GM) are strongly correlated. Research indicates that professional athletes, especially ultra-marathon runners, have unique GM characteristics. However, more research has focused on elite athletes, with little attention given to amateur sports enthusiasts, especially those in the middle-aged population. Therefore, this study focuses on the impact of long-term running on the composition and potential functions of the GM in middle-aged individuals. Methods: We compared the GM of 25 middle-aged serious runnerswith 22 sedentary healthy controls who had minimal exercise habitsusing 16S rRNA gene sequencing. Additionally, we assessed dietary habits using a food frequency questionnaire. Results and Discussion: Statistical analysis indicates that there is no significant difference in dietary patterns between the control group and serious runners. Diversity analysis results indicate that there is no significant difference in α diversity between the two groups of GM, but there is a significant difference in ß diversity. Analysis of the composition of GM reveals that Ruminococcus and Coprococcus are significantly enriched in serious runners, whereas Bacteroides, Lachnoclostridium, and Lachnospira are enriched in the control group. Differential analysis of functional pathway prediction results reveals significant differences in the functional metabolism levels of GM between serious runners and the control group. Further correlation analysis results indicate that this difference may be closely related to variations in GM. In conclusion, our results suggest that long-term exercise can lead to changes in the composition of the GM. These changes have the potential to impact the overall health of the individual by influencing metabolic regulation.

5.
Nat Commun ; 15(1): 4597, 2024 May 30.
Article En | MEDLINE | ID: mdl-38816464

Wireless capsule endoscopy (WCE) offers a non-invasive evaluation of the digestive system, eliminating the need for sedation and the risks associated with conventional endoscopic procedures. Its significance lies in diagnosing gastrointestinal tissue irregularities, especially in the small intestine. However, existing commercial WCE devices face limitations, such as the absence of autonomous lesion detection and treatment capabilities. Recent advancements in micro-electromechanical fabrication and computational methods have led to extensive research in sophisticated technology integration into commercial capsule endoscopes, intending to supersede wired endoscopes. This Review discusses the future requirements for intelligent capsule robots, providing a comparative evaluation of various methods' merits and disadvantages, and highlighting recent developments in six technologies relevant to WCE. These include near-field wireless power transmission, magnetic field active drive, ultra-wideband/intrabody communication, hybrid localization, AI-based autonomous lesion detection, and magnetic-controlled diagnosis and treatment. Moreover, we explore the feasibility for future "capsule surgeons".


Capsule Endoscopy , Wireless Technology , Capsule Endoscopy/methods , Capsule Endoscopy/instrumentation , Humans , Wireless Technology/instrumentation , Capsule Endoscopes , Robotics/instrumentation
6.
Research (Wash D C) ; 7: 0377, 2024.
Article En | MEDLINE | ID: mdl-38812531

4,4-Dimethylsterols constitute a unique class of phytosterols responsible for regulating endogenous cannabinoid system (ECS) functions. However, precise mechanism through which 4,4-dimethylsterols affect fat metabolism and the linkage to the ECS remain unresolved. In this study, we identified that 4,4-dimethylsterols, distinct from 4-demethseterols, act as inhibitors of fatty acid amide hydrolases (FAAHs) both in vivo and in vitro. Genetic ablation of FAAHs (faah-1) abolishes the effects of 4,4-dimethylsterols on fat accumulation and locomotion behavior in a Caenorhabditis elegans model. We confirmed that dietary intervention with 4,4-dimethylsterols in a high-fat diet (HFD) mouse model leads to a significant reduction in body weight (>11.28%) with improved lipid profiles in the liver and adipose tissues and increased fecal triacylglycerol excretion. Untargeted and targeted metabolomics further verified that 4,4-dimethylsterols influence unsaturated fatty acid biosynthesis and elevate oleoyl ethanolamine levels in the intestine. We propose a potential molecular mechanism in which 4,4-dimethylsterols engage in binding interactions with the catalytic pocket (Ser241) of FAAH-1 protein due to the shielded polarity, arising from the presence of 2 additional methyl groups (CH3). Consequently, 4,4-dimethylsterols represent an unexplored class of beneficial phytosterols that coordinate with FAAH-1 activity to reduce fat accumulation, which offers new insight into intervention strategies for treating diet-induced obesity.

7.
Adv Sci (Weinh) ; : e2309642, 2024 May 30.
Article En | MEDLINE | ID: mdl-38816950

Cholesterol 25-hydroxylase (CH25H), an enzyme involved in cholesterol metabolism, regulates inflammatory responses and lipid metabolism. However, its role in kidney disease is not known.  The author found that CH25H transcript is expressed mostly in glomerular and peritubular endothelial cells and that its expression increased in human and mouse diabetic kidneys.  Global deletion of Ch25h in Leprdb/db mice aggravated diabetic kidney disease (DKD), which is associated with increased endothelial cell apoptosis. Treatment of 25-hydroxycholesterol (25-HC), the product of CH25H, alleviated kidney injury in Leprdb/db mice. Mechanistically, 25-HC binds to GTP-binding protein ADP-ribosylation factor 4 (ARF4), an essential protein required for maintaining protein transport in the Golgi apparatus. Interestingly, ARF4's GTPase-activating protein ASAP1 is also predominantly expressed in endothelial cells and its expression increased in DKD. Suppression of ARF4 activity by deleting ARF4 or overexpressing ASAP1 results in endothelial cell death. These results indicate that 25-HC binds ARF4 to inhibit its interaction with ASAP1, and thereby resulting in enhanced ARF4 activity to confer renoprotection. Therefore, treatment of 25-HC improves kidney injury in DKD in part by restoring ARF4 activity to maintain endothelial cell survival. This study provides a novel mechanism and a potential new therapy for DKD.

8.
Heliyon ; 10(8): e28787, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38628705

Genetic diseases are currently diagnosed by functional mutations. However, only some mutations are associated with disease. It is necessary to establish a quick prediction model for clinical screening. Pathogenic mutations in NGLY1 cause a rare autosomal recessive disease known as congenital disorder of deglycosylation (NGLY1-CDDG). Although NGLY1-CDDG can be diagnosed through gene sequencing, clinical relevance of a detected mutation in NGLY1 needs to be further confirmed. In this study, taken NGLY1-CDDG as an example, a comprehensive and practical predictive model for pathogenic mutations on NGLY1 through an NGLY1/Glycopeptide complex model was constructed, the binding sites of NGLY1 and glycopeptides were simulated, and an in vitro enzymatic assay system was established to facilitate quick clinical decisions for NGLY1-CDDG patients. The docking model covers 42 % of reported NGLY1-CDDG missense mutations (5/12). All reported mutations were subjected to in vitro enzymatic assay in which 18 mutations were dysfunctional (18/30). In addition, a full spectrum of functional R328 mutations was assayed and 11 mutations were dysfunctional (11/19). In this study, a model of NGLY1 and glycopeptides was built for potential functional mutations in NGLY1. In addition, the effect of potential regulatory compounds, including N-acetyl-l-cysteine and dithiothreitol, on NGLY1 was examined. The established in vitro assay may serve as a standard protocol to facilitate rapid diagnosis of all mutations in NGLY1-CDDG. This method could also be applied as a comprehensive and practical predictive model for the other rare genetic diseases.

9.
Cell Death Dis ; 15(3): 211, 2024 Mar 13.
Article En | MEDLINE | ID: mdl-38480683

Activation of the Hippo pathway by angiomotins to limit colorectal cancer progression is prevalent, whereas the regulation of angiomotins remains elusive. In this study, we uncover the involvement of an upregulated E3 ubiquitin ligase called RNF166, which destabilizes angiomotins, activates YAP, and is associated with a poor prognosis in colorectal cancer patients. Mechanistically, RNF166 specifically recognizes PARsylated angiomotin, a modification mediated by tankyrase at specific amino acid residues (D506, E513, E516, and E528). The tankyrase inhibitor XAV939, effectively prevents RNF166-dependent destabilization of angiomotins and subsequent activation of YAP. Additionally, YAP-5SA, a constitutively active form of YAP, rescues colorectal cancer progression following knockdown of RNF166. Importantly, the C-terminus of RNF66, particularly the Di19-ZF domain, is the crucial region responsible for recognizing ADP-ribosylated angiomotins. Together, this work not only sheds light on the regulation of the Hippo pathway in colorectal cancer but also uncovers a novel poly(ADP-ribose)-binding domain, which may serve as a potential therapeutic target for intervention.


Colorectal Neoplasms , Tankyrases , Humans , Angiomotins , Adaptor Proteins, Signal Transducing/metabolism , Signal Transduction , Tankyrases/metabolism , Colorectal Neoplasms/genetics , Ubiquitin-Protein Ligases/metabolism
10.
Catheter Cardiovasc Interv ; 103(3): 391-403, 2024 02.
Article En | MEDLINE | ID: mdl-38204355

BACKGROUND: The SYNTAX score Ⅱ 2020 (SSⅡ-2020) was created as a customized decision-making tool for individuals diagnosed with complex coronary artery disease (CAD). Nevertheless, there has been a scarcity of research investigating the long-term predictive significance of SSⅡ-2020 for patients with both CAD and chronic renal insufficiency (CRI) who undergo percutaneous coronary intervention (PCI). AIMS: We sought to showcase the prognostic capacity of SSII-2020 in evaluating long-term all-cause mortality (ACM) within this high-risk patient cohort. METHODS: A retrospective cohort comprising 1156 individuals diagnosed with CRI and exhibiting left main CAD, three-vessel CAD or both was included in this investigation. We categorized participants into three groups based on the optimal SSII-2020 threshold for predicting long-term ACM, determined using the X-tile software. RESULTS: At the median follow-up duration of 6.3 years, the ACM rates were determined to be 10% in the low, 17% in the moderate, and 28% in the high SSII-2020 groups (p < 0.001). Employing multivariate Cox regression analysis, it was observed that the high SSII-2020 group exhibited a 3.289-fold increased risk of ACM (95% confidence interval [CI]: 2.229-4.856, p < 0.001) compared with the low SSII-2020 group, whereas the high SSII-2020 group displayed a 1.757-fold (95% CI: 1.190-2.597, p = 0.005) in comparison to the median SSII-2020 groups. Compared with SSII, the SSII-2020 had an incremental value for predicting 7-year ACM (C-index: 0.662 vs. 0.534, p = 0.007; IDI: 0.016, p < 0.001). CONCLUSIONS: SSII-2020 enhances long-term ACM prediction, facilitates improved risk stratification, and improves clinical utility for PCI patients with complex CAD and CRI.


Coronary Artery Disease , Percutaneous Coronary Intervention , Renal Insufficiency, Chronic , Humans , Percutaneous Coronary Intervention/adverse effects , Retrospective Studies , Treatment Outcome , Coronary Artery Disease/diagnostic imaging , Coronary Artery Disease/therapy , Renal Insufficiency, Chronic/complications , Renal Insufficiency, Chronic/diagnosis , Risk Factors , Risk Assessment
11.
Food Funct ; 15(2): 992-1003, 2024 Jan 22.
Article En | MEDLINE | ID: mdl-38179649

Minor constituents exhibit certain antioxidant interactions in vitro, and the effects in different media are different. However, it is not clear whether there are antioxidant interactions in cells after digestion and absorption. We utilized the cellular antioxidant evaluation model in HepG2 cells to study the antioxidant interaction between α-tocopherol and γ-oryzanol, and the interaction mechanism of a binary mixture was also illustrated. A cellular antioxidant assay (CAA) model and a combined index (CI) method were firstly used to explore the antioxidant activity and interaction of the binary mixture in HepG2 cells. The CAA value was positively correlated with the single addition concentration, while the results displayed a biphasic tendency with increasing concentrations of the binary mixture. The combination of TO11 (1 µg mL-1 α-tocopherol and 10 µg mL-1 γ-oryzanol) showed the greatest antioxidant activity and synergistic effect, and the maximum CAA value reached up to 94.84 ± 4.2. Then the mechanism of the synergistic antioxidant effect of the binary mixture was explained from three aspects including cellular uptake, intracellular reactive oxygen species (ROS) level and endogenous enzyme activity. The results demonstrated that the antioxidant interaction of the binary mixture in cells was related to cellular uptake of minor constituents, and the combination of TO11 exerted a synergistic effect by scavenging ROS and up-regulating glutathione peroxidase (GSH-Px) activity, resulting in the strongest cellular antioxidant activity. This study throws light on the nature of antioxidant interaction between minor constituents, which may contribute to the development of related functional foods and rational dietary collocation.


Antioxidants , Phenylpropionates , alpha-Tocopherol , Humans , Antioxidants/pharmacology , alpha-Tocopherol/pharmacology , Reactive Oxygen Species , Hep G2 Cells
12.
Food Funct ; 15(3): 1355-1368, 2024 Feb 05.
Article En | MEDLINE | ID: mdl-38205834

Dietary nutritional support for special populations is an effective and feasible method to improve the quality of life of patients and reduce medical pressure. Acer truncatum Bunge seed oil (ATSO) is widely recognized for its ability to promote nerve myelin regeneration. To evaluate the ameliorative effects of ATSO on chemotherapy-induced demyelination, a zebrafish model of chemotherapy-induced demyelination was established. The results showed that 100 µg mL-1 of ATSO reversed tail morphology damage, axon degeneration, touch response delay, ROS level upregulation and the expression of myelin basic protein decrease in chemotherapy-induced zebrafish. In addition, the expression of myelin markers (including sox10, krox20, and pmp22) in oxaliplatin-induced cells was markedly reversed by ATSO and its active components (gondoic acid, erucic acid, and nervonic acid). ATSO and its active components could reverse demyelination by ameliorating mitochondrial dysfunction. Conversely, linoleic acid and linolenic acid promoted demyelination by exacerbating mitochondrial dysfunction. Moreover, the Pink1/Parkin pathway was recognized as the main reason for ATSO and its active components improving mitochondrial function by activating mitophagy and restoring autophagic flow. Taken together, this study demonstrated that ATSO and its active components could be further developed as novel functional food ingredients to antagonize demyelination.


Acer , Antineoplastic Agents , Demyelinating Diseases , Mitochondrial Diseases , Animals , Humans , Mitophagy , Oxaliplatin/pharmacology , Zebrafish/metabolism , Quality of Life , Seeds/metabolism , Ubiquitin-Protein Ligases/metabolism , Plant Oils/pharmacology , Antineoplastic Agents/pharmacology , Protein Serine-Threonine Kinases
13.
Comput Biol Med ; 168: 107779, 2024 01.
Article En | MEDLINE | ID: mdl-38061153

Clear cell renal cell carcinoma is a threat to public health with high morbidity and mortality. Clinical evidence has shown that cancer-associated thrombosis poses significant challenges to treatments, including drug resistance and difficulties in surgical decision-making in ccRCC. However, the coagulation pathway, one of the core mechanisms of cancer-associated thrombosis, recently found closely related to the tumor microenvironment and immune-related pathway, is rarely researched in ccRCC. Therefore, we integrated bulk RNA-seq data, DNA mutation and methylation data, single-cell data, and proteomic data to perform a comprehensive analysis of coagulation-related genes in ccRCC. First, we demonstrated the importance of the coagulation-related gene set by consensus clustering. Based on machine learning, we identified 5 coagulation signature genes and verified their clinical value in TCGA, ICGC, and E-MTAB-1980 databases. It's also demonstrated that the specific expression patterns of coagulation signature genes driven by CNV and methylation were closely correlated with pathways including apoptosis, immune infiltration, angiogenesis, and the construction of extracellular matrix. Moreover, we identified two types of tumor cells in single-cell data by machine learning, and the coagulation signature genes were differentially expressed in two types of tumor cells. Besides, the signature genes were proven to influence immune cells especially the differentiation of T cells. And their protein level was also validated.


Carcinoma, Renal Cell , Kidney Neoplasms , Thrombosis , Humans , Carcinoma, Renal Cell/genetics , Prognosis , Multiomics , Proteomics , Machine Learning , Kidney Neoplasms/genetics , Tumor Microenvironment
14.
Molecules ; 28(23)2023 Nov 24.
Article En | MEDLINE | ID: mdl-38067490

N-glycanase 1 (NGLY1) is an essential enzyme involved in the deglycosylation of misfolded glycoproteins through the endoplasmic reticulum (ER)-associated degradation (ERAD) pathway, which could hydrolyze N-glycan from N-glycoprotein or N-glycopeptide in the cytosol. Recent studies indicated that NGLY1 inhibition is a potential novel drug target for antiviral therapy. In this study, structure-based virtual analysis was applied to screen candidate NGLY1 inhibitors from 2960 natural compounds. Three natural compounds, Poliumoside, Soyasaponin Bb, and Saikosaponin B2 showed significantly inhibitory activity of NGLY1, isolated from traditional heat-clearing and detoxifying Chinese herbs. Furthermore, the core structural motif of the three NGLY1 inhibitors was a disaccharide structure with glucose and rhamnose, which might exert its action by binding to important active sites of NGLY1, such as Lys238 and Trp244. In traditional Chinese medicine, many compounds containing this disaccharide structure probably targeted NGLY1. This study unveiled the leading compound of NGLY1 inhibitors with its core structure, which could guide future drug development.


Glucose , Rhamnose , Peptide-N4-(N-acetyl-beta-glucosaminyl) Asparagine Amidase , Glycoproteins/metabolism , Cytosol/metabolism
15.
Quant Imaging Med Surg ; 13(12): 8107-8120, 2023 Dec 01.
Article En | MEDLINE | ID: mdl-38106252

Background: Type 2 diabetes mellitus (T2DM) and hypertension (HT) often coexist and contribute to left atrial (LA) functional abnormalities. The aim of the present study was to explore whether there is a potential interaction effect between T2DM and HT on LA function. Methods: A total of 135 patients (45 with T2DM only, 45 with HT only, and 45 with both T2DM and HT) were enrolled and compared to 45 age- and sex-matched controls. LA volume fraction, including LA ejection fraction (LAEF), LA expansion index (LAEI), LA passive emptying fraction (LAPEF), and LA active emptying fraction (LAAEF), and strain parameters, including LA reservoir longitudinal strain (LASr), LA conduit longitudinal strain (LAScd), and LA contraction longitudinal strain (LASct), were obtained using three-dimensional echocardiography (3DE). Results: Patients with T2DM had significantly more impaired LA reservoir and conduit functions compared to those without T2DM (P<0.05), and patients with HT had a significantly more impaired LA reservoir function, conduit function, and booster pump function compared to those without HT (P<0.05). Two-way analysis of variance showed that there were significant additive interaction effects between T2DM and HT with respect to LASr (PT2DM + HT =0.002) and LAScd (PT2DM + HT =0.001). Generalized linear model demonstrated that T2DM + HT had a greater relative contribution than either T2DM or HT alone to the LA strain indexes, even after adjustment for other confounders (LASr, ßT2DM + HT =-3.931, 95% CI: -6.237 to -1.624, P=0.001; LAScd, ßT2DM + HT=-3.781, 95% CI: -5.653 to -1.908, P<0.001). Conclusions: Both T2DM and HT had an adverse effect on LA function. The coexistence of both conditions further impaired LA performance in an additive interaction fashion.

16.
Pharmaceuticals (Basel) ; 16(12)2023 Dec 08.
Article En | MEDLINE | ID: mdl-38139831

Fenofibrate is known as a lipid-lowering drug. Although previous studies have reported that fenofibrate exhibits potential antitumor activities, IC50 values of fenofibrate could be as high as 200 µM. Therefore, we investigated the antitumor activities of six synthesized fenofibrate derivatives. We discovered that one compound, SIOC-XJC-SF02, showed significant antiproliferative activity on human hepatocellular carcinoma (HCC) HCCLM3 cells and HepG2 cells (the IC50 values were 4.011 µM and 10.908 µM, respectively). We also found this compound could inhibit the migration of human HCC cells. Transmission electron microscope and flow cytometry assays demonstrated that this compound could induce apoptosis of human HCC cells. The potential binding sites of this compound acting on human HCC cells were identified by mass spectrometry-cellular thermal shift assay (MS-CETSA). Molecular docking, Western blot, and enzyme activity assay-validated binding sites in human HCC cells. The results showed that fumarate hydratase may be a potential binding site of this compound, exerting antitumor effects. A xenograft model in nude mice demonstrated the anti-liver cancer activity and the mechanism of action of this compound. These findings indicated that the antitumor effect of this compound may act via activating fumarate hydratase, and this compound may be a promising antitumor candidate for further investigation.

17.
Int J Biol Macromol ; 253(Pt 6): 127090, 2023 Dec 31.
Article En | MEDLINE | ID: mdl-37758107

κ-Carrageenan/konjac glucomannan (κ-CA/KGM) composite hydrogels often fail to meet industrial requirements due to their low gel strength and poor mechanical properties, while solid lipid nanoparticles are potential materials to address this challenge due to their good biocompatibility. In the study, we propose using Quillaja saponin-stabilized solid lipid nanoparticle (QSLN) as nanofillers to enhance properties of κ-carrageenan/konjac glucan (κ-CA/KGM) composite hydrogels, and with emphasis on the effect of QSLN filling concentration on the structure and properties of composite hydrogels and the possible mechanisms were investigated. The best performance of QSLN-filled composite hydrogels was achieved at the QSLN concentration of 2.4 %. QSLN was uniformly distributed in the hydrogel matrix and formed electrostatic interactions and hydrogen bonding interactions with the matrix at an appropriate filling level, which enhanced the textural and rheological properties of the hydrogel greatly. In addition, the results of low-field NMR experiments showed that the filling of QSLN reduced the water mobility by enhancing the entanglement of polymer chains in the hydrogel matrix, which improved the freeze-thaw stability and regulated the swelling and deswelling behavior of the composite hydrogel. However, with the increasing of QSLN filling concentration, the above improvements were weakened by the depletion of van der Waals interactions due to the large amount of QSLN aggregation and the weakening of electrostatic interaction. In turn, the hydrogel was found to modulate the crystalline behavior of QSLN by X-ray diffraction and differential scanning calorimeter monitoring. Overall, the optimal synergistic effect between structure and properties could be achieved when the QSLN filling concentration was 2.4 %. These results provide a basis for the development of products that require excellent gel properties and structure.


Hydrogels , Mannans , Hydrogels/chemistry , Carrageenan/chemistry , Quillaja Saponins , Mannans/chemistry , Lipids
18.
BMC Microbiol ; 23(1): 276, 2023 Sep 29.
Article En | MEDLINE | ID: mdl-37773054

BACKGROUND: Staphylococcus haemolyticus (S. haemolyticus) is the main etiological factor in skin and soft tissue infections (SSTI). S. haemolyticus infections are an important concern worldwide, especially with the associated biofilms and drug resistance. Herein, we investigated the inhibitory effect of Flavaspidic acid BB obtained from plant extractions on clinical S. haemolyticus strains and their biofilms. Moreover, we predicted its ability to bind to the protein-binding site by molecular simulation. Since the combination of Hsp70 and RNase P synthase after molecular simulation with flavaspidic acid BB is relatively stable, enzyme-linked immunosorbent assay (ELISA) was used to investigate Hsp70 and RNase P synthase to verify the potential antimicrobial targets of flavaspidic acid BB. RESULTS: The minimum inhibitory concentrations (MIC) of flavaspidic acid BB on 16 clinical strains of S. haemolyticus was 5 ~ 480 µg/mL, and BB had a slightly higher inhibitory effect on the biofilm than MUP. The inhibitory effect of flavaspidic acid BB on biofilm formation was better with an increase in the concentration of BB. Molecular simulation verified its ability to bind to the protein-binding site. The combination of ELISA kits showed that flavaspidic acid BB promoted the activity of Hsp70 and inhibited the activity of RNase P, revealing that flavaspidic acid BB could effectively inhibit the utilization and re-synthesis of protein and tRNA synthesis, thus inhibiting bacterial growth and biofilm formation to a certain extent. CONCLUSIONS: This study could potentially provide a new prospect for the development of flavaspidic acid BB as an antibacterial agent for resistant strains.


Ribonuclease P , Staphylococcus , Ribonuclease P/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Butyrophenones/pharmacology , Microbial Sensitivity Tests , Biofilms
19.
Front Plant Sci ; 14: 1254365, 2023.
Article En | MEDLINE | ID: mdl-37719213

Seed vigor (SV) is a crucial trait determining the quality of crop seeds. Currently, over 80% of China's cotton-planting area is in Xinjiang Province, where a fully mechanized planting model is adopted, accounting for more than 90% of the total fiber production. Therefore, identifying SV-related loci and genes is crucial for improving cotton yield in Xinjiang. In this study, three seed vigor-related traits, including germination potential, germination rate, and germination index, were investigated across three environments in a panel of 355 diverse accessions based on 2,261,854 high-quality single-nucleotide polymorphisms (SNPs). A total of 26 significant SNPs were detected and divided into six quantitative trait locus regions, including 121 predicted candidate genes. By combining gene expression, gene annotation, and haplotype analysis, two novel candidate genes (Ghir_A09G002730 and Ghir_D03G009280) within qGR-A09-1 and qGI/GP/GR-D03-3 were associated with vigor-related traits, and Ghir_A09G002730 was found to be involved in artificial selection during cotton breeding by population genetic analysis. Thus, understanding the genetic mechanisms underlying seed vigor-related traits in cotton could help increase the efficiency of direct seeding by molecular marker-assisted selection breeding.

20.
medRxiv ; 2023 Sep 07.
Article En | MEDLINE | ID: mdl-37732187

Kidney disease affects 50% of all diabetic patients; however, prediction of disease progression has been challenging due to inherent disease heterogeneity. We use deep learning to identify novel genetic signatures prognostically associated with outcomes. Using autoencoders and unsupervised clustering of electronic health record data on 1,372 diabetic kidney disease patients, we establish two clusters with differential prevalence of end-stage kidney disease. Exome-wide associations identify a novel variant in ARHGEF18, a Rho guanine exchange factor specifically expressed in glomeruli. Overexpression of ARHGEF18 in human podocytes leads to impairments in focal adhesion architecture, cytoskeletal dynamics, cellular motility, and RhoA/Rac1 activation. Mutant GEF18 is resistant to ubiquitin mediated degradation leading to pathologically increased protein levels. Our findings uncover the first known disease-causing genetic variant that affects protein stability of a cytoskeletal regulator through impaired degradation, a potentially novel class of expression quantitative trait loci that can be therapeutically targeted.

...