Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Small ; : e2402927, 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38794873

RESUMEN

Na3V2(PO4)3 is a promising high-voltage cathode for aqueous zinc-ion batteries (ZIBs) and organic sodium-ion batteries (SIBs). However, the poor rate capability, specific capacity, and cycling stability severely hamper it from further development. In this work, Na3V2(PO4)3 (NVP) with vanadium nitride (VN) quantum dots encapsulated by nitrogen-doped carbon (NC) nanoflowers (NVP/VN@NC) are manufactured as cathode using in situ nitridation, carbon coating, and structural adjustment. The outer NC layer increases the higher electronic conductivity of NVP. Furthermore, VN quantum dots with high theoretical capacity not only improve the specific capacity of pristine NVP, but also serve as abundant "pins" between NVP and NC to strengthen the stability of NVP/VN@NC heterostructure. For Zn-ion storage, these essential characteristics allow NVP/VN@NC to attain a high reversible capacity of 135.4 mAh g-1 at 0.1 A g-1, and a capacity retention of 91% after 2000 cycles at 5 A g-1. Meanwhile, NVP/VN@NC also demonstrates to be a stable cathode material for SIBs, which can reach a high reversible capacity of 124.5 mAh g-1 at 0.1 A g-1, and maintain 92% of initial capacity after 11000 cycles at 5 A g-1. This work presents a feasible path to create innovative high-voltage cathodes with excellent reaction kinetics and structural stability.

2.
Invest Ophthalmol Vis Sci ; 63(9): 29, 2022 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-36018572

RESUMEN

Purpose: Retinal pigment epithelium (RPE) degeneration is a leading cause of blindness in retinal degenerative diseases, but the mechanism of RPE regional degeneration remains largely unknown. This study aims to investigate the sensitivity of RPE to sodium iodate (SI) injury in the dorsal and ventral visual fields in mice and analyze whether overlaying cone photoreceptors regulate the sensitivity of RPE to SI-induced damage. Methods: SI was used to induce RPE degeneration in mice. Hematoxylin-eosin staining, immunostaining, and TUNEL assay were used to evaluate retinal degeneration along the dorsal-ventral axis. Flat-mounted and sectional retinal immunostaining were used to analyze the distribution of cones along the dorsoventral axis in C57BL/6, albino, and 129 mice. Electroretinography was used to examine the retinal function. Results: Dorsal-central RPE was more sensitive to SI-mediated injury along the dorsal-ventral axis in C57BL/6 mice. Compared with the ventral RPE, the dorsal-central RPE was dominantly covered by M cone photoreceptors in these mice. Interestingly, M cone photoreceptor degeneration was followed by dorsal RPE degeneration under a low dose of SI. Furthermore, the sensitivity of dorsal RPE to a low dose of SI was reduced in both albino and 129 mouse strains with dominant mixed cones instead of M cones in the dorsal visual field. Conclusions: These findings suggest that dorsal-central RPE is more sensitive to SI injury and that SI-induced RPE degeneration could be controlled by modifying the dominant overlying cone population in the mouse dorsal retina, thereby highlighting a potential role of M cones in RPE regional degeneration.


Asunto(s)
Células Fotorreceptoras Retinianas Conos , Degeneración Retiniana , Animales , Modelos Animales de Enfermedad , Yodatos , Ratones , Ratones Endogámicos C57BL , Retina , Epitelio Pigmentado de la Retina
3.
Chem Biol Interact ; 339: 109432, 2021 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-33684387

RESUMEN

Mitochondrial dependent oxidative stress (OS) and subsequent cell death are considered as the major cytotoxicity caused by Triethylene glycol dimethacrylate (TEGDMA), a commonly monomer of many resin-based dental composites. Under OS microenvironment, autophagy serves as a cell homeostatic mechanism and maintains redox balance through degradation or turnover of cellular components in order to promote cell survival. However, whether autophagy is involved in the mitochondrial oxidative damage and apoptosis induced by TEGDMA, and the cellular signaling pathways underlying this process remain unclear. In the present study, we demonstrated that TEGDMA induced mouse preodontoblast cell line (mDPC6T) dysfunctional mitochondrial oxidative response. In further exploring the underlying mechanisms, we found that TEGDMA impaired autophagic flux, as evidenced by increased LC3-II expression and hindered p62 degradation, thereby causing both mitochondrial oxidative damage and cell apoptosis. These results were further verified by treatment with chloroquine (autophagy inhibitor) and rapamycin (autophagy promotor). More importantly, we found that the JNK/MAPK pathway was the key upstream regulator of above injury process. Collectively, our finding firstly demonstrated that TEGDMA induced JNK-dependent autophagy, thereby promoting mitochondrial dysfunction-associated oxidative damage and apoptosis in preodontoblast.


Asunto(s)
Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Estrés Oxidativo/efectos de los fármacos , Polietilenglicoles/farmacología , Ácidos Polimetacrílicos/farmacología , Animales , Línea Celular , Supervivencia Celular/efectos de los fármacos , Cloroquina/farmacología , Ratones , Proteínas Asociadas a Microtúbulos/metabolismo , Oxidación-Reducción/efectos de los fármacos , Proteínas de Unión al ARN/metabolismo , Transducción de Señal/efectos de los fármacos , Sirolimus/farmacología
4.
Toxicol Appl Pharmacol ; 417: 115482, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33689844

RESUMEN

Incomplete polymerization or biodegradation of dental resin materials results in the release of resin monomers such as triethylene glycol dimethacrylate (TEGDMA), causing severe injury of dental pulp cells. To date, there has been no efficient treatment option for this complication, in part due to the lack of understanding of the mechanism underlying these phenomena. Here, for the first time, we found that notoginsenoside R1 (NR1), a bioactive ingredient extracted from Panax notoginseng, exerted an obvious protective effect on TEGDMA-induced mitochondrial apoptosis in the preodontoblast mDPC6T cell line. In terms of the mechanism of action, NR1 enhanced the level of phosphorylated Akt (protein kinase B), resulting in the activation of a transcriptional factor, nuclear factor erythroid 2-related factor 2 (Nrf2), and eventually upregulating cellular ability to resist TEGDMA-related toxicity. Inhibiting the Akt/Nrf2 pathway by pharmaceutical inhibitors significantly decreased NR1-mediated cellular antioxidant properties and aggravated mitochondrial oxidative damage in TEGDMA-treated cells. Interestingly, NR1 also promoted mitophagy, which was identified as the potential downstream of the Akt/Nrf2 pathway. Blocking the Akt/Nrf2 pathway inhibited mitophagy and abolished the protection of NR1 on cells exposed to TEGDMA. In conclusion, these findings reveal that the activation of Akt/Nrf2 pathway-mediated mitophagy by NR1 might be a promising approach for preventing resin monomer-induced dental pulp injury.


Asunto(s)
Antioxidantes/farmacología , Apoptosis/efectos de los fármacos , Ginsenósidos/farmacología , Mitocondrias/efectos de los fármacos , Mitofagia/efectos de los fármacos , Factor 2 Relacionado con NF-E2/metabolismo , Odontoblastos/efectos de los fármacos , Polietilenglicoles/toxicidad , Ácidos Polimetacrílicos/toxicidad , Proteínas Proto-Oncogénicas c-akt/metabolismo , Animales , Línea Celular , Activación Enzimática , Ratones , Mitocondrias/enzimología , Mitocondrias/patología , Odontoblastos/enzimología , Odontoblastos/patología , Estrés Oxidativo/efectos de los fármacos , Fosforilación , Transducción de Señal
5.
Carbohydr Polym ; 209: 101-110, 2019 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-30732789

RESUMEN

Polysaccharides are an important class of materials that are often exploited in the fields of food, agriculture, biomedical engineering and wastewater treatment owing to their unique and tunable properties. In this work, we utilize an inexpensive and sustainable extracellular polysaccharide salecan (EPS), which is produced by bacterium Agrobacterium sp. ZX09, as a hydrogel matrix, poly(3-sulfopropyl methacrylate potassium salt) (PSM) as side chains to fabricate EPS-grafted-PSM adsorbents through a simple one-pot approach. Scanning electron microscope, X-ray diffraction, Fourier transformed infrared spectroscopy, rheometry and thermogravimetry were conducted to characterize the physicochemical properties of resultant adsorbents. We noticed that EPS not only served as the host chains of network to adjust the water uptake ability of adsorbents, but also endued them with tunable polarity. Further, the adsorption behaviors of developed adsorbents to copper ions (Cu2+) were explored: these gels present high absorption ability for Cu2+ through a chemical adsorption process which well described by Freundlich isotherm and pseudo-second-order kinetic models. In summary, the approach exhibited in this work opens a new avenue to design polysaccharide-based materials for Cu2+ adsorption.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...