Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Eur J Pharmacol ; 968: 176430, 2024 Apr 05.
Article En | MEDLINE | ID: mdl-38369274

Memory impairment affects cognition and information processing, and attention, leading to a decline in life quality of patients. Previous studies have shown the memory-improving effects of sea cucumber peptides. This study further explored the memory-improving mechanisms of sea cucumber peptides using scopolamine-induced memory-impaired mice and identified novel memory-improving peptides within low molecular weight peptide fractions. The sea cucumber peptides were categorized into three groups based on their molecular weights: SCP-L (molecular weight greater than 10 kDa), SCP-M (weight between 3 kDa and 10 kDa), and SCP-S (molecular weight less than 3 kDa). The results showed that SCP-S improved behavioral performance by regulating cholinergic system disorder and reducing oxidative stress levels, distinguishing itself from SCP-M and SCP-L. Further, SCP-S was found to exhibit a well ability in alleviating the degree of neuroinflammation dependent on microglia and promoting synaptic plasticity. Additionally, a novel memory-improving peptide Ser-Phe-Gly-Asp-Ile (SFGDI) was identified by EASY-nano-LC/MS/MS after simulated digestion-absorption coupling of in silico technologies from SCP-S. SFGDI protected against oxidative stress and regulated cholinergic system in scopolamine-induced PC12 cells. These findings suggest that SCP-S and SFGDI might be considered as potential memory-improving food for people suffering from memory disorders.


Scopolamine , Sea Cucumbers , Rats , Humans , Mice , Animals , Scopolamine/pharmacology , Tandem Mass Spectrometry , Memory Disorders/chemically induced , Memory Disorders/drug therapy , Peptides/pharmacology , Peptides/therapeutic use , Oxidative Stress , Cholinergic Agents/pharmacology
2.
Plant Phenomics ; 5: 0121, 2023.
Article En | MEDLINE | ID: mdl-38076281

Accurate assessment of crop biochemical profiles plays a crucial role in diagnosing their physiological status. The conventional destructive methods, although reliable, demand extensive laboratory work for measuring various traits. On the other hand, nondestructive techniques, while efficient and adaptable, often suffer from reduced precision due to the intricate interplay of the field environment and canopy structure. Striking a delicate balance between efficiency and accuracy, we have developed the Bio-Master phenotyping system. This system is capable of simultaneously measuring four vital biochemical components of the canopy profile: dry matter, water, chlorophyll, and nitrogen content. Bio-Master initiates the process by addressing structural influences, through segmenting the fresh plant and then further chopping the segment into uniform small pieces. Subsequently, the system quantifies hyperspectral reflectance and fresh weight over the sample within a controlled dark chamber, utilizing an independent light source. The final step involves employing an embedded estimation model to provide synchronous estimates for the four biochemical components of the measured sample. In this study, we established a comprehensive training dataset encompassing a wide range of rice varieties, nitrogen levels, and growth stages. Gaussian process regression model was used to estimate biochemical contents utilizing reflectance data obtained by Bio-Master. Leave-one-out validation revealed the model's capacity to accurately estimate these contents at both leaf and plant scales. With Bio-Master, measuring a single rice plant takes approximately only 5 min, yielding around 10 values for each of the four biochemical components across the vertical profile. Furthermore, the Bio-Master system allows for immediate measurements near the field, mitigating potential alterations in plant status during transportation and processing. As a result, our measurements are more likely to faithfully represent in situ values. To summarize, the Bio-Master phenotyping system offers an efficient tool for comprehensive crop biochemical profiling. It harnesses the benefits of remote sensing techniques, providing significantly greater efficiency than conventional destructive methods while maintaining superior accuracy when compared to nondestructive approaches.

3.
Neurobiol Dis ; 16(3): 585-95, 2004 Aug.
Article En | MEDLINE | ID: mdl-15262271

Neurogenesis persists throughout life in the rodent subventricular zone (SVZ)-olfactory bulb pathway and increases in the adult after brain insults. The influence of neonatal injury on SVZ neural precursors is unknown. We examined the effects of hypoxia-ischemia (HI) on neonatal mouse SVZ cell proliferation and neurogenesis. Postnatal day 10 (P10) mice underwent right carotid artery ligation followed by 10% O2 exposure for 45 min. The SVZ area and hemispheric injury were quantified morphometrically 1-3 weeks later. Bromodeoxyuridine (BrdU) was used to label proliferating cells, and cell phenotypes of the progeny were identified by immunohistochemistry. HI significantly enlarged the ipsilateral SVZ at P18, P24, and P31, and increases in the SVZ area correlated directly with the degree of hemispheric damage. HI also stimulated cell proliferation and neurogenesis in the SVZ and peri-infarct striatum. Some newborn cells expressed a neuronal phenotype at P24, but not at P31, indicating that neurogenesis was short-lived. These results suggest that augmenting SVZ neuroblast recruitment and survival may improve neural repair after neonatal brain injury.


Cerebral Ventricles/cytology , Hypoxia-Ischemia, Brain/pathology , Neurons/cytology , Stem Cells/cytology , Age Factors , Animals , Animals, Newborn , Cell Division , Mice , Mice, Inbred Strains
...