Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ecotoxicol Environ Saf ; 277: 116314, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38642409

RESUMEN

Fine particulate matter (PM2.5) has been extensively implicated in the pathogenesis of neurodevelopmental disorders, but the underlying mechanism remains unclear. Recent studies have revealed that PM2.5 plays a role in regulating iron metabolism and redox homeostasis in the brain, which is closely associated with ferroptosis. In this study, the role and underlying mechanism of ferroptosis in PM2.5-induced neurotoxicity were investigated in mice, primary hippocampal neurons, and HT22 cells. Our findings demonstrated that exposure to PM2.5 could induce abnormal behaviors, neuroinflammation, and neuronal loss in the hippocampus of mice. These effects may be attributed to ferroptosis induced by PM2.5 exposure in hippocampal neurons. RNA-seq analysis revealed that the upregulation of iron metabolism-related protein Heme Oxygenase 1 (HO-1) and the activation of mitophagy might play key roles in PM2.5-induced ferroptosis in HT22 cells. Subsequent in vitro experiments showed that PM2.5 exposure significantly upregulated HO-1 in primary hippocampal neurons and HT22 cells. Moreover, PM2.5 exposure activated mitophagy in HT22 cells, leading to the loss of mitochondrial membrane potential, alterations in the expression of autophagy-related proteins LC3, P62, and mTOR, as well as an increase in mitophagy-related protein PINK1 and PARKIN. As a heme-degradation enzyme, the upregulation of HO-1 promotes the release of excess iron, genetically inhibiting the upregulation of HO-1 in HT22 cells could prevent both PM2.5-induced mitophagy and ferroptosis. Furthermore, pharmacological inhibition of mitophagy in HT22 cells reduced levels of ferrous ions and lipid peroxides, thereby preventing ferroptosis. Collectively, this study demonstrates that HO-1 mediates PM2.5-induced mitophagy-dependent ferroptosis in hippocampal neurons, and inhibiting mitophagy or ferroptosis may be a key therapeutic target to ameliorate neurotoxicity following PM2.5 exposure.


Asunto(s)
Ferroptosis , Hemo-Oxigenasa 1 , Hipocampo , Mitofagia , Neuronas , Material Particulado , Regulación hacia Arriba , Animales , Material Particulado/toxicidad , Ferroptosis/efectos de los fármacos , Mitofagia/efectos de los fármacos , Hipocampo/efectos de los fármacos , Hipocampo/patología , Neuronas/efectos de los fármacos , Neuronas/patología , Ratones , Hemo-Oxigenasa 1/metabolismo , Hemo-Oxigenasa 1/genética , Regulación hacia Arriba/efectos de los fármacos , Masculino , Ratones Endogámicos C57BL , Contaminantes Atmosféricos/toxicidad , Proteínas de la Membrana
2.
Ecotoxicol Environ Saf ; 272: 116067, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38325270

RESUMEN

In order to comprehend the underlying mechanisms contributing to the development and exacerbation of asthma resulting from exposure to fine particulate matter (PM2.5), we established an asthmatic model in fat mass and obesity-associated gene knockdown mice subjected to PM2.5 exposure. Histological analyses using hematoxylin-eosin (HE) and Periodic Acid-Schiff (PAS) staining revealed that the down-regulation of the fat mass and obesity-associated gene (Fto) expression significantly ameliorated the pathophysiological alterations observed in asthmatic mice exposed to PM2.5. Furthermore, the down-regulation of Fto gene expression effectively attenuated damage to the airway epithelial barrier. Additionally, employing in vivo and in vitro models, we elucidated that PM2.5 modulated FTO expression by inducing oxidative stress. Asthmatic mice exposed to PM2.5 exhibited elevated Fto expression, which correlated with increased levels of reactive oxygen species. Similarly, when cells were exposed to PM2.5, FTO expression was up-regulated in a ROS-dependent manner. Notably, the administration of N-acetyl cysteine successfully reversed the PM2.5-induced elevation in FTO expression. Concurrently, we performed transcriptome-wide Methylated RNA immunoprecipitation Sequencing (MeRIP-seq) analysis subsequent to PM2.5 exposure. Through the implementation of Gene Set Enrichment Analysis and m6A-IP-qPCR, we successfully identified inhibitor of nuclear factor kappa B kinase subunit beta (IKBKB) as a target gene regulated by FTO. Interestingly, exposure to PM2.5 led to increased expression of IKBKB, while m6A modification on IKBKB mRNA was reduced. Furthermore, our investigation revealed that PM2.5 also regulated IKBKB through oxidative stress. Significantly, the down-regulation of IKBKB effectively mitigated epithelial barrier damage in cells exposed to PM2.5 by modulating nuclear factor-kappa B (NF-κB) signaling. Importantly, we discovered that decreased m6A modification on IKBKB mRNA facilitated by FTO enhanced its stability, consequently resulting in up-regulation of IKBKB expression. Collectively, our findings propose a novel role for FTO in the regulation of IKBKB through m6A-dependent mRNA stability in the context of PM2.5-induced oxidative stress. Therefore, it is conceivable that the utilization of antioxidants or inhibition of FTO could represent potential therapeutic strategies for the management of asthma exacerbated by PM2.5 exposure.


Asunto(s)
Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato , Asma , Quinasa I-kappa B , Animales , Ratones , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/genética , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/metabolismo , Asma/inducido químicamente , Asma/genética , Quinasa I-kappa B/metabolismo , Obesidad , Estrés Oxidativo/genética , Material Particulado/toxicidad , Estabilidad del ARN , ARN Mensajero/metabolismo
3.
Hum Vaccin Immunother ; 19(2): 2246542, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37614152

RESUMEN

A good safety and immunogenicity profile was reported in Phase I and II clinical trials of inactivated SARS-CoV-2 vaccines. Here, we report two cases associated with vaccine-associated adverse events, including one patient with fever and another with anaphylactic shock resulting from inactivated SARS-CoV-2 vaccination. Cell sub-types and the importance of genetic characteristics were assessed using single-cell mRNA sequencing and machine learning. Overall, the patient with fever showed a significant increase in the numbers of cytotoxic CD8 T cells and MKI67high CD8 T cells. A potential concurrent infection with the Epstein-Barr virus enhanced interferon type I responses to vaccination against the virus. STAT1, E2F1, YBX1, and E2F7 played a key role in the transcription regulation of MKI67high CD8 T cells. In contrast, the patient with allergic shock displayed predominant increases in the numbers of S100A9high monocytes, activated CD4 T cells, and PPBPhigh megakaryocytes. The decision tree showed that LYZ and S100A8 in S100A9high monocytes contributed to the degranulation of neutrophils and activation of neutrophils involved in allergic shock. PPBP and PF4 were major contributors to platelet degranulation. These findings highlight the diversity of adverse reactions following inactivated SARS-CoV-2 vaccination and show the emerging role of cellular subtypes and central genes in vaccine-associated adverse reactions.


The identification of cell sub-types may help in the diagnosis of COVID-19 vaccine-related adverse events.COVID-19 vaccination-related acute pulmonary edema may induce a higher risk of thrombosis.The long-term fever after vaccination may attribute to the excessive type I interferon responses.


Asunto(s)
Vacunas contra la COVID-19 , Humanos , Masculino , Femenino , Adulto , Vacunas contra la COVID-19/efectos adversos , Fiebre/inmunología , Fiebre/patología , Edema Pulmonar/inmunología , Edema Pulmonar/patología , Linfocitos T CD8-positivos/citología , Proliferación Celular , Megacariocitos/patología , Análisis de Expresión Génica de una Sola Célula , Linfocitos B/citología , Monocitos/citología , Anafilaxia/inmunología , Anafilaxia/patología
4.
J Exp Bot ; 74(1): 194-213, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36197099

RESUMEN

Medicago truncatula NODULE ROOT1 (MtNOOT1) and Pisum sativum COCHLEATA1 (PsCOCH1) are orthologous genes belonging to the NOOT-BOP-COCH-LIKE (NBCL) gene family which encodes key transcriptional co-regulators of plant development. In Mtnoot1 and Pscoch1 mutants, the development of stipules, flowers, and symbiotic nodules is altered. MtNOOT2 and PsCOCH2 represent the single paralogues of MtNOOT1 and PsCOCH1, respectively. In M. truncatula, MtNOOT1 and MtNOOT2 are both required for the establishment and maintenance of symbiotic nodule identity. In legumes, the role of NBCL2 in above-ground development is not known. To better understand the roles of NBCL genes in legumes, we used M. truncatula and P. sativum nbcl mutants, isolated a knockout mutant for the PsCOCH2 locus and generated Pscoch1coch2 double mutants in P. sativum. Our work shows that single Mtnoot2 and Pscoch2 mutants develop wild-type stipules, flowers, and symbiotic nodules. However, the number of flowers was increased and the pods and seeds were smaller compared to the wild type. Furthermore, in comparison to the corresponding nbcl1 single mutants, both the M. truncatula and P. sativum nbcl double mutants show a drastic alteration in stipule, inflorescence, flower, and nodule development. Remarkably, in both M. truncatula and P. sativum nbcl double mutants, stipules are transformed into a range of aberrant leaf-like structures.


Asunto(s)
Medicago truncatula , Nódulos de las Raíces de las Plantas , Nódulos de las Raíces de las Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Pisum sativum/genética , Medicago truncatula/metabolismo , Simbiosis/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fijación del Nitrógeno/genética , Mutación
5.
Ecotoxicol Environ Saf ; 244: 114039, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-36049333

RESUMEN

BACKGROUND: Evidence suggests that exposure to PM2.5 increased hospitalization and mortality rates of respiratory diseases. However, the potential biomarkers and targets associated with PM2.5-induced lung dysfunction are not fully discovered. METHODS: Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and HALLMARK enrichment analysis of the RNA-seq data (Beas-2B cells treated with PM2.5) were applied. Gene set enrichment analysis (GSEA) was performed to identify the biological processes correlated with autophagy. Three gene expression profile datasets (GSE158954, GSE155616 and GSE182199) were downloaded from the Gene Expression Omnibus (GEO) database to identify the potential targets. PM2.5-exposed mice were constructed. Real-time qPCR, siRNA transfection, western blot, immunofluorescence, and pathological staining were applied for validation both in vitro and in vivo studies. RESULTS: GO, KEGG and HALLMARK enrichment based on RNA-seq data showed that the differentially expressed genes (DEGs) were associated with autophagy like lysosome and macroautophagy. GSEA analysis revealed that PM2.5 was positively correlated with autophagy-related biological processes compared with control group. Venn diagrams identified IL24 was upregulated in our data as well as in these three datasets (GSE158954, GSE155616 and GSE182199) after PM2.5 exposure. Consistent with the analysis, activation of autophagy by PM2.5 was validated in vivo and in vitro. In PM2.5-exposed mice, lung pathological changes were observed, including airway inflammation and mucus secretion. The mRNA and protein levels of the key gene, IL24, were significantly increased. Moreover, Bafilomycin A1, the inhibitor of autophagy, inhibited the autophagy and ameliorated lung injury induced by PM2.5. Furthermore, downregulation of IL24 decreased autophagy activity. Meanwhile, IL24 was regulated by mTOR signaling. CONCLUSIONS: In summary, we discovered a potential relationship between IL24 and autophagy during PM2.5 exposure. IL24 might be a novel potential biomarker or therapeutic target in PM2.5 caused lung dysfunction through regulation of autophagy.


Asunto(s)
Citocinas/metabolismo , Perfilación de la Expresión Génica , Material Particulado , Animales , Autofagia/genética , Pulmón , Ratones , Material Particulado/toxicidad , ARN Mensajero , ARN Interferente Pequeño , Serina-Treonina Quinasas TOR , Transcriptoma
6.
Pharmacol Res ; 182: 106286, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35662628

RESUMEN

Pulmonary fibrosis (PF) is the pathological change of end-stage interstitial lung diseases with high mortality and limited therapeutic options. Lung macrophages have distinct subsets with divergent functions, and play critical roles in the pathogenesis of PF. In this study, integrative analysis of lung single-cell and bulk RNA-seq data from patients with fibrotic hypersensitivity pneumonitis and idiopathic pulmonary fibrosis was utilized to identify particular macrophage subsets during the development of PF. We find a specific macrophage subpopulation highly expressing PLA2G7 in fibrotic lungs. We performed additional single-cell RNA-seq analysis to identify analogous macrophage population in bleomycin (BLM)-induced mouse pulmonary fibrosis models. By in vitro and in vivo experiments, we further reveal the pro-fibrotic role for this PLA2G7high macrophage subset in fibroblast-to-myofibroblast transition (FMT) during pulmonary fibrosis. PLA2G7 promotes FMT via LPC/ATX/LPA/LPA2 axis in macrophages. Moreover, PLA2G7 is regulated by STAT1, and pharmacological inhibition of PLA2G7 by Darapladib ameliorates pulmonary fibrosis in BLM-induced mice. The results of this study support the view that PLA2G7high macrophage subpopulation contributes importantly to the pathogenesis of PF, which provides a potential way for targeted therapy.


Asunto(s)
1-Alquil-2-acetilglicerofosfocolina Esterasa , Fibrosis Pulmonar Idiopática , Macrófagos , 1-Alquil-2-acetilglicerofosfocolina Esterasa/efectos adversos , 1-Alquil-2-acetilglicerofosfocolina Esterasa/genética , 1-Alquil-2-acetilglicerofosfocolina Esterasa/metabolismo , Animales , Bleomicina , Fibrosis Pulmonar Idiopática/inducido químicamente , Fibrosis Pulmonar Idiopática/genética , Pulmón , Ratones , Ratones Endogámicos C57BL , Análisis de Secuencia de ARN , Análisis de la Célula Individual
7.
Environ Pollut ; 308: 119607, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35718042

RESUMEN

Fine particulate matter 2.5 (PM2.5) exposure leads to the progress of pulmonary disease. It has been reported that N6-methyladenosine (m6A) modification was involved in various biological processes and diseases. However, the critical role of m6A modification in pulmonary disease during PM2.5 exposure remains elusive. Here, we revealed that lung inflammation and mucus production caused by PM2.5 were associated with m6A modification. Both in vivo and in vitro assays demonstrated that PM2.5 exposure elevated the total level of m6A modification as well as the methyltransferase like 3 (METTL3) expression. Integration analysis of m6A RNA immunoprecipitation-seq (meRIP-seq) and RNA-seq discovered that METTL3 up-regulated the expression level and the m6A modification of Interleukin 24 (IL24). Importantly, we explored that the stability of IL24 mRNA was enhanced due to the increased m6A modification. Moreover, the data from qRT-PCR showed that PM2.5 also increased YTH N6-Methyladenosine RNA Binding Protein 1 (YTHDF1) expression, and the up-regulated YTHDF1 augmented IL24 mRNA translation efficiency. Down-regulation of Mettl3 reduced Il24 expression and ameliorated the pulmonary inflammation and mucus secretion in mice exposed to PM2.5. Taken together, our finding provided a comprehensive insight for revealing the significant role of m6A regulators in the lung injury via METTL3/YTHDF1-coupled epitranscriptomal regulation of IL24.


Asunto(s)
Citocinas , Lesión Pulmonar , Metiltransferasas , Adenosina/análogos & derivados , Adenosina/metabolismo , Animales , Citocinas/genética , Citocinas/metabolismo , Interleucinas/genética , Interleucinas/metabolismo , Metiltransferasas/genética , Metiltransferasas/metabolismo , Ratones , Material Particulado/toxicidad , Estabilidad del ARN , Regulación hacia Arriba
8.
Cell Death Discov ; 8(1): 38, 2022 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-35091537

RESUMEN

Fibrotic hypersensitivity pneumonitis (FHP) remains one of fatal interstitial pulmonary disease. Comprehensively dissecting the cellular heterogeneity of FHP paves the way for developing general gene therapeutic solutions for FHP. Here, utilizing an integrated strategy based on scRNA-seq, scTCR-seq, and bulk RNA-seq analysis of FHP profiles, we identified ten major cell types and 19 unique subtypes. FHP exhibited higher features of EMT and inflammation-promoting than normal control. In distinct subsets of lung macrophages in FHP, FN1high, PLA2G7high, and MS4A6Ahigh macrophages with predominant M2 phenotype exhibited higher activity of inflammatory responses and para-inflammation than other macrophages. KRT17high basal-like epithelial cells were significantly increased in FHP, and showed higher ability to induce EMT. We identified roles for ACTA2high, COL1A1high, and PLA2G2Ahigh fibroblasts in FHP, which were significantly related to interstitial fibrosis. NK cells and KLRG1+ effector CD8+ T cells had greater activity in inflammation-promoting. Our results provide a comprehensive portrait of cellular heterogeneity in FHP, and highlight the indispensable role of cell subpopulations in shaping the complexity and heterogeneity of FHP. These subpopulations are potentially key players for FHP pathogenesis.

9.
Plant Physiol ; 188(1): 363-381, 2022 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-34662405

RESUMEN

In cultivated grasses, tillering, leaf, and inflorescence architecture, as well as abscission ability, are major agronomical traits. In barley (Hordeum vulgare), maize (Zea mays), rice (Oryza sativa), and brachypodium (Brachypodium distachyon), NOOT-BOP-COCH-LIKE (NBCL) genes are essential regulators of vegetative and reproductive development. Grass species usually possess 2-4 NBCL copies and until now a single study in O. sativa showed that the disruption of all NBCL genes strongly altered O. sativa leaf development. To improve our understanding of the role of NBCL genes in grasses, we extended the study of the two NBCL paralogs BdUNICULME4 (CUL4) and BdLAXATUM-A (LAXA) in the nondomesticated grass B. distachyon. For this, we applied reversed genetics and generated original B. distachyon single and double nbcl mutants by clustered regularly interspaced short palindromic repeats - CRISPR associated protein 9 (CRISPR-Cas9) approaches and genetic crossing between nbcl targeting induced local lesions in genomes (TILLING) mutants. Through the study of original single laxa CRISPR-Cas9 null alleles, we validated functions previously proposed for LAXA in tillering, leaf patterning, inflorescence, and flower development and also unveiled roles for these genes in seed yield. Furthermore, the characterization of cul4laxa double mutants revealed essential functions for nbcl genes in B. distachyon development, especially in the regulation of tillering, stem cell elongation and secondary cell wall composition as well as for the transition toward the reproductive phase. Our results also highlight recurrent antagonist interactions between NBCLs occurring in multiple aspects of B. distachyon development.


Asunto(s)
Brachypodium/crecimiento & desarrollo , Brachypodium/genética , Inflorescencia/crecimiento & desarrollo , Inflorescencia/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/genética , Semillas/crecimiento & desarrollo , Semillas/genética , Secuencia Conservada , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Variación Genética , Genotipo , Mutación , Genética Inversa
10.
J Asthma Allergy ; 14: 1411-1423, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34848976

RESUMEN

BACKGROUND: Exposure to air pollutants cause exacerbation of asthma, but the experimental evidence and the mechanisms still need to be collected and addressed. METHODS: Asthma model was constructed by ovalbumin (OVA) combined with or without airborne fine particulate matter 2.5 (PM2.5) exposure. Lung sections were stained by hematoxylin-eosin staining (H&E) and Masson's trichrome. RNA-seq and gene set enrichment analysis (GSEA) was performed to identify the key pathway. TdT mediated dUTP Nick End Labeling (TUNEL) assay, real-time qPCR, Western blot, immunofluorescence and lentivirus transfection were applied for mechanism discovery. RESULTS: In this study, we found PM2.5 aggravated airway inflammation in OVA-induced asthmatic mice. RNA-seq analysis also showed that epithelial mesenchymal transition (EMT) was enhanced in OVA-induced mice exposed to PM2.5 compared with that in OVA-induced mice. In the meantime, we observed that apoptosis was significantly increased in asthmatic mice exposed to PM2.5 by using GSEA analysis, which was validated by TUNEL assay. By using bioinformatic analysis, Fas associated via death domain (FADD), a new actor in innate immunity and inflammation, was identified to be related to apoptosis, EMT and tight junction. Furthermore, we found that the transcript and protein levels of tight junction markers, E-cadherin, zonula occludens (ZO)-1 and Occludin, were decreased after PM2.5 exposure in vivo and in vitro by using RT-qPCR and immunofluorescence, with the increased expression of FADD. Moreover, down-regulation of FADD attenuated PM2.5-induced apoptosis and tight junction disruption in human airway epithelial cells. CONCLUSION: Taken together, we demonstrated that PM2.5 aggravated epithelial tight junction disruption through apoptosis mediated by up-regulation of FADD in OVA-induced model.

11.
Ecotoxicol Environ Saf ; 218: 112272, 2021 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-33962274

RESUMEN

BACKGROUND: Particulate matter of 2.5 µm or less in diameter (PM2.5) is one of the most complex pollutants in the atmospheric environment and harmful to human health. Epidemiologic evidence suggests that asthma exacerbation is associated with PM2.5 exposure. However, the molecular mechanism of PM2.5 in the development of asthma is not fully addressed. METHODS: PM2.5 was collected from Chengdu, China, and the components were analyzed. The relationship between PM2.5 exposure and asthma severity was investigated in an Ovalbumin (OVA)-induced murine model of asthma. U-BIOPRED data from public database and our own RNA-seq data were analyzed to identify the hub genes. Real-time qPCR, immunofluorescence, immunohistochemistry and pathological staining were applied for mechanism dissection in both in vitro and in vivo studies. RESULTS: In PM2.5 samples, a total of 11 elements including major elements and trace elements were identified, 14 of the 16 Polycyclic aromatic hydrocarbons (PAHs) were detected except Acenaphthene and Fluorene. PM2.5 exposure aggravated pulmonary inflammation, mucus secretion, and neutrophils infiltration in asthma model. Based on transcriptome analysis of mild-to-severe asthma dataset, it showed that mucus secretion and neutrophil degranulation correlated with asthma severity. Moreover, NAD(P)H:quinone oxidoreductase 1 (NQO1) was screened out as a hub gene whose expression positively correlated with MUC5AC expression in patient with asthma by performing joint analysis. Furthermore, in OVA-induced asthma model and in vitro assay, it also revealed that PM2.5-induced MU5AC expression was regulated by NQO1 through neutrophil extracellular traps (NETs) caused by oxidative stress. CONCLUSION: Taken together, we discovered a potential relationship between asthma severity and PM2.5 exposure. In addition, neutrophil depletion, NETs inhibition or anti-NQO1 might be novel potential therapeutic options for treatment of PM2.5-induced mucus hyper-secretion.

12.
Plant J ; 103(2): 645-659, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32343459

RESUMEN

In cultivated grasses, tillering, spike architecture and seed shattering represent major agronomical traits. In barley, maize and rice, the NOOT-BOP-COCH-LIKE (NBCL) genes play important roles in development, especially in ligule development, tillering and flower identity. However, compared with dicots, the role of grass NBCL genes is underinvestigated. To better understand the role of grass NBCLs and to overcome any effects of domestication that might conceal their original functions, we studied TILLING nbcl mutants in the non-domesticated grass Brachypodium distachyon. In B. distachyon, the NBCL genes BdUNICULME4 (CUL4) and BdLAXATUM-A (LAXA) are orthologous, respectively, to the barley HvUniculme4 and HvLaxatum-a, to the maize Zmtassels replace upper ears1 and Zmtassels replace upper ears2 and to the rice OsBLADE-ON-PETIOLE1 and OsBLADE-ON-PETIOLE2/3. In B. distachyon, our reverse genetics study shows that CUL4 is not essential for the establishment of the blade-sheath boundary but is necessary for the development of the ligule and auricles. We report that CUL4 also exerts a positive role in tillering and a negative role in spikelet meristem activity. On the other hand, we demonstrate that LAXA plays a negative role in tillering, positively participates in spikelet development and contributes to the control of floral organ number and identity. In this work, we functionally characterized two new NBCL genes in a context of non-domesticated grass and highlighted original roles for grass NBCL genes that are related to important agronomical traits.


Asunto(s)
Brachypodium/metabolismo , Proteínas de Plantas/metabolismo , Brachypodium/genética , Brachypodium/crecimiento & desarrollo , Secuencia Conservada/genética , Genes de Plantas/genética , Genes de Plantas/fisiología , Inflorescencia/crecimiento & desarrollo , Inflorescencia/metabolismo , Mutación , Filogenia , Proteínas de Plantas/genética , Genética Inversa , Transcriptoma
13.
Plant Physiol ; 178(1): 295-316, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30026291

RESUMEN

Symbiotic interactions between legume plants and rhizobia result in the formation of nitrogen-fixing nodules, but the molecular actors and the mechanisms allowing for the maintenance of nodule identity are poorly understood. Medicago truncatula NODULE ROOT1 (MtNOOT1), Pisum sativum COCHLEATA1 (PsCOCH1), and Lotus japonicus NOOT-BOP-COCH-LIKE1 (LjNBCL1) are orthologs of Arabidopsis (Arabidopsis thaliana) AtBLADE-ON-PETIOLE1/2 and are members of the NBCL gene family, which has conserved roles in plant development and is essential for indeterminate and determinate nodule identity in legumes. The loss of function of MtNOOT1, PsCOCH1, and LjNBCL1 triggers a partial loss of nodule identity characterized by the development of ectopic roots arising from nodule vascular meristems. Here, we report the identification and characterization of a second gene involved in regulating indeterminate nodule identity in M. truncatula, MtNOOT2MtNOOT2 is the paralog of MtNOOT1 and belongs to a second legume-specific NBCL subclade, the NBCL2 clade. MtNOOT2 expression was induced during early nodule formation, and it was expressed primarily in the nodule central meristem. Mtnoot2 mutants did not present any particular symbiotic phenotype; however, the loss of function of both MtNOOT1 and MtNOOT2 resulted in the complete loss of nodule identity and was accompanied by drastic changes in the expression of symbiotic, defense, and root apical meristem marker genes. Mtnoot1 noot2 double mutants developed only nonfixing root-like structures that were no longer able to host symbiotic rhizobia. This study provides original insights into the molecular basis underlying nodule identity in legumes forming indeterminate nodules.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Medicago truncatula/genética , Proteínas de Plantas/genética , Nódulos de las Raíces de las Plantas/genética , Secuencia de Aminoácidos , Medicago truncatula/crecimiento & desarrollo , Medicago truncatula/metabolismo , Meristema/genética , Meristema/crecimiento & desarrollo , Meristema/metabolismo , Mutación , Fijación del Nitrógeno/genética , Filogenia , Proteínas de Plantas/clasificación , Proteínas de Plantas/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente , Nódulos de las Raíces de las Plantas/crecimiento & desarrollo , Nódulos de las Raíces de las Plantas/metabolismo , Homología de Secuencia de Aminoácido , Simbiosis/genética
14.
Carbohydr Polym ; 95(1): 282-7, 2013 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-23618270

RESUMEN

Sulfated polysaccharides have been known to inhibit proliferation in tumor cells. However, the molecular mechanisms involved in sulfated polysaccharides-induced apoptosis are still uncharacterized. In this study, the effect of a chemically sulfated polysaccharide obtained from Grifola frondosa (S-GFB) on HepG2 cell proliferation and apoptosis-related mechanism were investigated. It was found that S-GFB inhibited proliferation of HepG2 cells in a dose-dependent manner with IC50 at 48 h of 61 µg ml(-1). The results of scanning electron micrographs indicated that S-GFB induced typical apoptotic morphological feature in HepG2 cells. Flow cytometric analysis demonstrated that S-GFB caused apoptosis of HepG2 cells through cells arrested at S phase. Western-blotting results showed that S-GFB inhibited notch1 expression, IκB-α degradation and NF-κB/p65 translocation from cytoplasm into nucleus. Simultaneously, the apoptotic mechanism of HepG2 cells induced by S-GFB was associated with down regulation of FLIP, and activation of caspase-3 and caspase-8. Taken together, these findings suggest that the S-GFB induces apoptosis through a notch1/NF-κB/p65-mediated caspase pathway.


Asunto(s)
Grifola , Polisacáridos/farmacología , Receptor Notch1/metabolismo , Factor de Transcripción ReIA/metabolismo , Apoptosis/efectos de los fármacos , Proteína Reguladora de Apoptosis Similar a CASP8 y FADD/metabolismo , Caspasa 3/metabolismo , Caspasa 8/metabolismo , Supervivencia Celular/efectos de los fármacos , Células Hep G2 , Humanos , Polisacáridos/química , Transducción de Señal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA