Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 210
1.
Adv Mater ; : e2401640, 2024 May 06.
Article En | MEDLINE | ID: mdl-38710154

Orthotopic glioblastoma (GBM) has an aggressive growth pattern and complex pathogenesis, becoming one of the most common and deadly tumors of the central nervous system (CNS). The emergence of RNA therapies offers promise for the treatment of GBM. However, the efficient and precise delivery of RNA drugs to specific tumor cells in the brain with high cellular heterogeneity remains ongoing. Here, a strategy is proposed to regulate protein conformation through lipid nanoenvironments to custom-design virus-mimicking nanoparticles (VMNs) with excellent selective cell targeting capabilities, leading to efficient and precise delivery of small interfering RNA for effective treatment of GBM. The optimized VMNs not only retain the ability to cross the blood-brain barrier and release the RNA by lysosomal escape like natural viruses but also ensure precise enrichment in the GBM area. This study lays the conceptual foundation for the custom design of VMNs with superior cell-selective targeting capabilities and opens up the possibility of RNA therapies for the efficient treatment of GBM and CNS tumors.

2.
Chin J Traumatol ; 2024 Apr 28.
Article En | MEDLINE | ID: mdl-38744544

PURPOSE: The aim of the present study was to analyze the influence of muscle activation on lumbar injury under a specific +Gz load. METHODS: A hybrid finite element human body model with detailed lumbar anatomy and lumbar muscle activation capabilities was developed. Using the specific +Gz loading acceleration as input, the kinematic and biomechanical responses of the occupant's lower back were studied for both activated and deactivated states of the lumbar muscles. RESULTS: The results indicated that activating the major lumbar muscles enhanced the stability of the occupant's torso, which delayed the contact between the occupant's head and the headrest. Lumbar muscle activation led to higher strain and stress output in the lumbar spine under +Gz load, such as the maximum Von-Mises stress of the vertebrae and intervertebral discs increased by 177.9% and 161.8%, respectively, and the damage response index increased by 84.5%. CONCLUSION: In both simulations, the occupant's risk of lumbar injury does not exceed 10% probability. Therefore, the activation of muscles could provide good protection for maintaining the lumbar spine and reduce the effect of acceleration in vehicle travel direction.

3.
Anal Chem ; 2024 May 08.
Article En | MEDLINE | ID: mdl-38717985

Cell membrane stiffness is critical for cellular function, with cholesterol and sphingomyelin as pivot contributors. Current methods for measuring membrane stiffness are often invasive, ex situ, and slow in process, prompting the need for innovative techniques. Here, we present a fluorescence resonance energy transfer (FRET)-based protein sensor designed to address these challenges. The sensor consists of two fluorescent units targeting sphingomyelin and cholesterol, connected by a linker that responds to the proximity of these lipids. In rigid membranes, cholesterol and sphingomyelin are in close proximity, leading to an increased FRET signal. We utilized this sensor in combination with confocal microscopy to explore changes in plasma membrane stiffness under various conditions, including differences in osmotic pressure, the presence of reactive oxygen species (ROS) and variations in substrate stiffness. Furthermore, we explored the impact of SARS-CoV-2 on membrane stiffness and the distribution of ACE2 after attachment to the cell membrane. This tool offers substantial potential for future investigations in the field of mechanobiology.

4.
BMC Microbiol ; 24(1): 119, 2024 Apr 05.
Article En | MEDLINE | ID: mdl-38580930

Obesity is a metabolic disorder closely associated with profound alterations in gut microbial composition. However, the dynamics of species composition and functional changes in the gut microbiome in obesity remain to be comprehensively investigated. In this study, we conducted a meta-analysis of metagenomic sequencing data from both obese and non-obese individuals across multiple cohorts, totaling 1351 fecal metagenomes. Our results demonstrate a significant decrease in both the richness and diversity of the gut bacteriome and virome in obese patients. We identified 38 bacterial species including Eubacterium sp. CAG:274, Ruminococcus gnavus, Eubacterium eligens and Akkermansia muciniphila, and 1 archaeal species, Methanobrevibacter smithii, that were significantly altered in obesity. Additionally, we observed altered abundance of five viral families: Mesyanzhinovviridae, Chaseviridae, Salasmaviridae, Drexlerviridae, and Casjensviridae. Functional analysis of the gut microbiome indicated distinct signatures associated to obesity and identified Ruminococcus gnavus as the primary driver for function enrichment in obesity, and Methanobrevibacter smithii, Akkermansia muciniphila, Ruminococcus bicirculans, and Eubacterium siraeum as functional drivers in the healthy control group. Additionally, our results suggest that antibiotic resistance genes and bacterial virulence factors may influence the development of obesity. Finally, we demonstrated that gut vOTUs achieved a diagnostic accuracy with an optimal area under the curve of 0.766 for distinguishing obesity from healthy controls. Our findings offer comprehensive and generalizable insights into the gut bacteriome and virome features associated with obesity, with the potential to guide the development of microbiome-based diagnostics.


Clostridiales , Gastrointestinal Microbiome , Humans , Gastrointestinal Microbiome/genetics , Metagenome , Obesity/microbiology , Bacteria/genetics , Feces/microbiology , Akkermansia
5.
Anal Chem ; 96(18): 7231-7239, 2024 May 07.
Article En | MEDLINE | ID: mdl-38656982

Electrochemiluminescence (ECL) imaging, a rapidly evolving technology, has attracted significant attention in the field of cellular imaging. However, its primary limitation lies in its inability to analyze the motion behaviors of individual particles in live cellular environments. In this study, we leveraged the exceptional ECL properties of quantum dots (QDs) and the excellent electrochemical properties of carbon dots (CDs) to develop a high-brightness ECL nanoprobe (CDs-QDs) for real-time ECL imaging between living cells. This nanoprobe has excellent signal-to-noise ratio imaging capabilities for the single-particle tracking (SPT) of biomolecules. Our finding elucidated the enhanced ECL mechanism of CDs-QDs in the presence of reactive oxygen species through photoluminescence, electrochemistry, and ECL techniques. We further tracked the movement of single particles on membrane nanotubes between live cells and confirmed that the ECL-based SPT technique using CD-QD nanoparticles is an effective approach for monitoring the transport behaviors of biomolecules on membrane nanotubes between live cells. This opens a promising avenue for the advancement of ECL-based single-particle detection and the dynamic quantitative imaging of biomolecules.


Electrochemical Techniques , Luminescent Measurements , Nanotubes , Quantum Dots , Quantum Dots/chemistry , Humans , Electrochemical Techniques/methods , Nanotubes/chemistry , Luminescent Measurements/methods , HeLa Cells , Cell Membrane/metabolism , Cell Membrane/chemistry , Reactive Oxygen Species/metabolism , Reactive Oxygen Species/analysis , Carbon/chemistry
6.
Analyst ; 149(9): 2507-2525, 2024 Apr 29.
Article En | MEDLINE | ID: mdl-38630498

Outbreaks of viral diseases seriously jeopardize people's health and cause huge economic losses. At the same time, virology provides a new perspective for biology, molecular biology and cancer research, and it is important to study the discovered viruses with potential applications. Therefore, the development of immediate and rapid viral detection methods for the prevention and treatment of viral diseases as well as the study of viruses has attracted extensive attention from scientists. With the continuous progress of science and technology, especially in the field of bioanalysis, a series of new detection techniques have been applied to the on-site rapid detection of viruses, which has become a powerful approach for human beings to fight against viruses. In this paper, the latest research progress of rapid point-of-care detection of viral nucleic acids, antigens and antibodies is presented. In addition, the advantages and disadvantages of these technologies are discussed from the perspective of practical application requirements. Finally, the problems and challenges faced by rapid viral detection methods and their development prospects are discussed.


Point-of-Care Testing , Viruses , Humans , Viruses/isolation & purification , Viruses/genetics , Virus Diseases/diagnosis , Antigens, Viral/analysis , Antibodies, Viral/immunology , Antibodies, Viral/analysis , Biosensing Techniques/methods , Point-of-Care Systems , RNA, Viral/analysis , RNA, Viral/genetics
7.
J Nat Prod ; 2024 Apr 11.
Article En | MEDLINE | ID: mdl-38603577

Epithelial ovarian cancer is among the deadliest gynecological tumors worldwide. Clinical treatment usually consists of surgery and adjuvant chemo- and radiotherapies. Due to the high rate of recurrence and rapid development of drug resistance, the current focus of research is on finding effective natural products with minimal toxic side effects for treating epithelial ovarian tumors. Cannabidiol is among the most abundant cannabinoids and has a non-psychoactive effect compared to tetrahydrocannabinol, which is a key advantage for clinical application. Studies have shown that cannabidiol has antiproliferative, pro-apoptotic, cytotoxic, antiangiogenic, anti-inflammatory, and immunomodulatory properties. However, its therapeutic value for epithelial ovarian tumors remains unclear. This study aims to investigate the effects of cannabidiol on epithelial ovarian tumors and to elucidate the underlying mechanisms. The results showed that cannabidiol has a significant inhibitory effect on epithelial ovarian tumors. In vivo experiments demonstrated that cannabidiol could inhibit tumor growth by modulating the intestinal microbiome and increasing the abundance of beneficial bacteria. Western blot assays showed that cannabidiol bound to EGFR/AKT/MMPs proteins and suppressed EGFR/AKT/MMPs expression in a dose-dependent manner. Network pharmacology and molecular docking results suggested that cannabidiol could affect the EGFR/AKT/MMPs signaling pathway.

8.
Int Med Case Rep J ; 17: 167-175, 2024.
Article En | MEDLINE | ID: mdl-38504721

Introduction: Pancreatic cancer (PC) is among the deadliest malignancies. Kidney cancer (KC) is a common malignancy globally. Chemo- or radio-therapies are not very effective to control PC or KC, and overdoses often cause severe site reactions to the patients. As a result, novel treatment strategies with high efficacy but without toxic side effects are urgently desired. Secoisolariciresinol diglucoside (SDG) belongs to plant lignans with potential anticancer activities, but clinical evidence is not available in PC or KC treatment. Patient Concerns: We report a rare case of an 83-year-old female patient with pancreatic and kidney occupying lesions that lacked the conditions to receive surgery or chemo- or radiotherapy. Diagnosis: Pancreatic and kidney cancers. Interventions: We gave dietary SDG to the patient as the only therapeutics. Outcomes: SDG effectively halted progression of both PC and KC. All clinical manifestations, including bad insomnia, loss of appetite, stomach symptoms, and skin itching over the whole body, all disappeared. The initial massive macroscopic hematuria became microscopic and infrequent, and other laboratory results also gradually returned to normal. Most of the cancer biomarkers, initially high such as CEA, CA199, CA724, CA125, came down rapidly, among which CA199 changed most radically. This patient has had progression-free survival of one year so far. Conclusion: These results demonstrate the potent inhibitory effects of SDG on PC and KC of this patient and provide promising novel therapeutics for refractory malignant tumors.

9.
Nano Lett ; 24(8): 2544-2552, 2024 Feb 28.
Article En | MEDLINE | ID: mdl-38349341

Labeling the genome and envelope of a virus with multicolor quantum dots (QDs) simultaneously enables real-time monitoring of viral uncoating and genome release, contributing to our understanding of virus infection mechanisms. However, current labeling techniques require genetic modification, which alters the virus's composition and infectivity. To address this, we utilized the CRISPR/Cas13 system and a bioorthogonal metabolic method to label the Japanese encephalitis virus (JEV) genome and envelopes with different-colored QDs in situ. This technique allows one-step two-color labeling of the viral envelope and intraviral genome with QDs harnessing virus infection. In combination with single-virus tracking, we visualized JEV uncoating and genome release in real time near the endoplasmic reticulum of live cells. This labeling strategy allows for real-time visualization of uncoating and genome release at the single-virus level, and it is expected to advance the study of other viral infection mechanisms.


Quantum Dots , Virus Diseases , Viruses , Humans , Viral Envelope/metabolism , Viral Envelope Proteins
10.
Natl Sci Rev ; 11(3): nwae021, 2024 Mar.
Article En | MEDLINE | ID: mdl-38410827

The cell nucleus is the main site for the storage and replication of genetic material, and the synthesis of substances in the nucleus is rhythmic, regular and strictly regulated by physiological processes. However, whether exogenous substances, such as nanoparticles, can be synthesized in situ in the nucleus of live cells has not been reported. Here, we have achieved in-situ synthesis of CdSxSe1-x quantum dots (QDs) in the nucleus by regulation of the glutathione (GSH) metabolic pathway. High enrichment of GSH in the nucleus can be accomplished by the addition of GSH with the help of the Bcl-2 protein. Then, high-valence Se is reduced to low-valence Se by glutathione-reductase-catalyzed GSH, and interacts with the Cd precursor formed through Cd and thiol-rich proteins, eventually generating QDs in the nucleus. Our work contributes to a new understanding of the syntheses of substances in the cell nucleus and will pave the way for the development of advanced 'supercells'.

11.
Nano Lett ; 24(5): 1816-1824, 2024 Feb 07.
Article En | MEDLINE | ID: mdl-38270101

Accurate quantification of exosomal PD-L1 protein in tumors is closely linked to the response to immunotherapy, but robust methods to achieve high-precision quantitative detection of PD-L1 expression on the surface of circulating exosomes are still lacking. In this work, we developed a signal amplification approach based on aptamer recognition and DNA scaffold hybridization-triggered assembly of quantum dot nanospheres, which enables bicolor phenotyping of exosomes to accurately screen for cancers and predict PD-L1-guided immunotherapeutic effects through machine learning. Through DNA-mediated assembly, we utilized two aptamers for simultaneous ultrasensitive detection of exosomal antigens, which have synergistic roles in tumor diagnosis and treatment prediction, and thus, we achieved better sample classification and prediction through machine-learning algorithms. With a drop of blood, we can distinguish between different cancer patients and healthy individuals and predict the outcome of immunotherapy. This approach provides valuable insights into the development of personalized diagnostics and precision medicine.


Nanospheres , Neoplasms , Quantum Dots , Humans , Early Detection of Cancer , B7-H1 Antigen , Immunotherapy , Machine Learning , Oligonucleotides , DNA
12.
Adv Mater ; 36(18): e2311457, 2024 May.
Article En | MEDLINE | ID: mdl-38243660

The extracellular space (ECS) is an important barrier against viral attack on brain cells, and dynamic changes in ECS microstructure characteristics are closely related to the progression of viral encephalitis in the brain and the efficacy of antiviral drugs. However, mapping the precise morphological and rheological features of the ECS in viral encephalitis is still challenging so far. Here, a robust approach is developed using single-particle diffusional fingerprinting of quantum dots combined with machine learning to map ECS features in the brain and predict the efficacy of antiviral encephalitis drugs. These results demonstrated that this approach can characterize the microrheology and geometry of the brain ECS at different stages of viral infection and identify subtle changes induced by different drug treatments. This approach provides a potential platform for drug proficiency assessment and is expected to offer a reliable basis for the clinical translation of drugs.


Antiviral Agents , Encephalitis, Viral , Extracellular Space , Machine Learning , Quantum Dots , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Extracellular Space/metabolism , Animals , Quantum Dots/chemistry , Encephalitis, Viral/drug therapy , Mice , Brain/diagnostic imaging , Brain/pathology , Rheology , Humans
13.
ACS Nano ; 18(5): 4507-4519, 2024 Feb 06.
Article En | MEDLINE | ID: mdl-38270127

Exosomes play an important role in the spread of viral infections and immune escape. However, the exact ability and mechanisms by which exosomes produced during viral infections (vExos) infect host cells are still not fully understood. In this study, we developed a dual-color exosome labeling strategy that simultaneously labels the external and internal structures of exosomes with quantum dots to enable in situ monitoring of the transport process of vExos in live cells using the single-particle tracking technique. Our finding revealed that vExos contains the complete influenza A virus (IAV) genome and viral ribonucleoprotein complexes (vRNPs) proteins but lacks viral envelope proteins. Notably, these vExos have the ability to infect cells and produce progeny viruses. We also found that vExos are transported in three stages, slow-fast-slow, and move to the perinuclear region via microfilaments and microtubules. About 30% of internalized vExos shed the external membrane and release the internal vRNPs into the cytoplasm by fusion with endolysosomes. This study suggested that vExos plays a supporting role in IAV infection by assisting with IAV propagation in a virus-independent manner. It emphasizes the need to consider the infectious potential of vExos and draws attention to the potential risk of exosomes produced by viral infections.


Exosomes , Influenza A virus , Influenza, Human , Orthomyxoviridae , Humans , Exosomes/metabolism , Endosomes/metabolism , Viral Proteins/metabolism , Virus Replication
14.
Adv Mater ; 36(2): e2306808, 2024 Jan.
Article En | MEDLINE | ID: mdl-37732588

The plasma membranes (PM) of mammalian cells contain diverse lipids, proteins, and carbohydrates that are important for systemic recognition and communication in health and disease. Cell membrane coating technology that imparts unique properties of natural plasma membranes to the surface of encapsulated nanoparticles is thus becoming a powerful platform for drug delivery, immunomodulation, and vaccination. However, current coating methods fail to take full advantage of the natural systems because they disrupt the complex and functionally essential features of PMs, most notably the chemical diversity and compositional differences of lipids in two leaflets of the PM. Herein, a new lipid coating approach is reported in which the lipid composition is optimized through a combination of biomimetic and systematic variation approaches for the custom design of nanocarrier systems for precision drug delivery. Nanocarriers coated with the optimized lipids offer unique advantages in terms of bioavailability and efficiency in tumor targeting, tumor penetration, cellular uptake, and drug release. This pilot study provides new insight into the rational design and optimization of nanocarriers for cancer chemotherapeutic drugs and lays the foundation for further customization of cell membrane-mimicking nanocarriers through systematic incorporation of other components.


Nanoparticles , Neoplasms , Animals , Cell Membrane/metabolism , Drug Carriers/chemistry , Drug Delivery Systems , Lipids/chemistry , Mammals , Nanoparticles/chemistry , Neoplasms/drug therapy , Pilot Projects , Humans
15.
Sci Bull (Beijing) ; 69(4): 502-511, 2024 Feb 26.
Article En | MEDLINE | ID: mdl-37993331

Viral envelope fusion with the host plasma membrane (PM) for genome release is a hallmark step in the life cycle of many enveloped viruses. This process is regulated by a complex network of biomolecules on the PM, but robust tools to precisely elucidate the dynamic mechanisms of virus-PM fusion events are still lacking. Here, we developed a quantitative single-virus tracking approach based on highly efficient dual-color labelling of viruses and batch trajectory analysis to achieve the spatiotemporal quantification of fusion events. This approach allows us to comprehensively analyze the membrane fusion mechanism utilized by pseudotyped severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) at the single-virus level and precisely elucidate how the relevant biomolecules synergistically regulate the fusion process. Our results revealed that SARS-CoV-2 may promote the formation of supersaturated clusters of cholesterol to facilitate the initiation of the membrane fusion process and accelerate the viral genome release.


COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/metabolism , Spike Glycoprotein, Coronavirus/genetics , Cell Membrane/metabolism , Membrane Fusion
16.
Gut Microbes ; 16(1): 2296603, 2024.
Article En | MEDLINE | ID: mdl-38149632

The human gut microbiota constitutes a vast and complex community of microorganisms. The myriad of microorganisms present in the intestinal tract exhibits highly intricate interactions, which play a crucial role in maintaining the stability and balance of the gut microbial ecosystem. These interactions, in turn, influence the overall health of the host. The mammalian gut microbes have evolved a wide range of mechanisms to suppress or even eliminate their competitors for nutrients and space. Simultaneously, extensive cooperative interactions exist among different microbes to optimize resource utilization and enhance their own fitness. This review will focus on the competitive mechanisms among members of the gut microorganisms and discuss key modes of actions, including bacterial secretion systems, bacteriocins, membrane vesicles (MVs) etc. Additionally, we will summarize the current knowledge of the often-overlooked positive interactions within the gut microbiota, and showcase representative machineries. This information will serve as a reference for better understanding the complex interactions occurring within the mammalian gut environment. Understanding the interaction dynamics of competition and cooperation within the gut microbiota is crucial to unraveling the ecology of the mammalian gut microbial communities. Targeted interventions aimed at modulating these interactions may offer potential therapeutic strategies for disease conditions.


Bacteriocins , Gastrointestinal Microbiome , Microbiota , Animals , Humans , Microbial Interactions , Mammals/microbiology
17.
Chem Soc Rev ; 53(2): 1058, 2024 Jan 22.
Article En | MEDLINE | ID: mdl-38116765

Correction for 'Virus-mimicking nanosystems: from design to biomedical applications' by Hao-Yang Liu et al., Chem. Soc. Rev., 2023, 52, 8481-8499, https://doi.org/10.1039/D3CS00138E.

18.
Chem Soc Rev ; 52(24): 8481-8499, 2023 Dec 11.
Article En | MEDLINE | ID: mdl-37929845

Nanomedicine, as an interdisciplinary discipline involving the development and application of nanoscale materials and technologies, is rapidly developing under the impetus of bionanotechnology and has attracted a great deal of attention from researchers. Especially, with the global outbreak of COVID-19, the in-depth investigation of the infection mechanism of the viruses has made the study of virus-mimicking nanosystems (VMNs) a popular research topic. In this review, we initiate with a brief historical perspective on the emergence and development of VMNs for providing a comprehensive view of the field. Next, we present emerging design principles and functionalization strategies for fabricating VMNs in light of viral infection mechanisms. Then, we describe recent advances in VMNs in biology, with a major emphasis on representative examples. Finally, we summarize the opportunities and challenges that exist in this field, hoping to provide new insights and inspiration to develop VMNs for disease diagnosis and treatment and to attract the interest of more researchers from different fields.


COVID-19 , Viruses , Humans , Nanomedicine , COVID-19/diagnosis
19.
Anal Chem ; 95(44): 16298-16304, 2023 11 07.
Article En | MEDLINE | ID: mdl-37874254

Translation is one of the many critical cellular activities regulated by viruses following host-cell invasion, and studies of viral mRNA translation kinetics and subcellular localization require techniques for the dynamic, real-time visualization of translation. However, conventional tools for imaging mRNA translation often require coding region modifications that may affect native translation. Here, we achieve dynamic imaging of translation with a tool that labels target mRNAs with unmodified coding regions using a CRISPR/dCas13 system with specific complementary paired guide RNAs. This system enables a real-time dynamic visualization of the translation process and is a promising tool for further investigations of the mechanisms of translation.


Clustered Regularly Interspaced Short Palindromic Repeats , Viruses , RNA, Messenger/genetics , Viruses/genetics , Diagnostic Imaging , Protein Biosynthesis
20.
J Transl Med ; 21(1): 704, 2023 10 09.
Article En | MEDLINE | ID: mdl-37814323

BACKGROUND: Colorectal cancer (CRC) is the third most common malignant tumor. Fusobacterium nucleatum (F. nucleatum) is overabundant in CRC and associated with metastasis, but the role of F. nucleatum in CRC cell migration and metastasis has not been fully elucidated. METHODS: Differential gene analysis, protein-protein interaction, robust rank aggregation analysis, functional enrichment analysis, and gene set variation analysis were used to figure out the potential vital genes and biological functions affected by F. nucleatum infection. The 16S rDNA sequencing and q-PCR were used to detect the abundance of F. nucleatum in tissues and stools. Then, we assessed the effect of F. nucleatum on CRC cell migration by wound healing and transwell assays, and confirmed the role of Matrix metalloproteinase 7 (MMP7) induced by F. nucleatum in cell migration. Furthermore, we dissected the mechanisms involved in F. nucleatum induced MMP7 expression. We also investigated the MMP7 expression in clinical samples and its correlation with prognosis in CRC patients. Finally, we screened out potential small molecular drugs that targeted MMP7 using the HERB database and molecular docking. RESULTS: F. nucleatum infection altered the gene expression profile and affected immune response, inflammation, biosynthesis, metabolism, adhesion and motility related biological functions in CRC. F. nucleatum was enriched in CRC and promoted the migration of CRC cell by upregulating MMP7 in vitro. MMP7 expression induced by F. nucleatum infection was mediated by the MAPK(JNK)-AP1 axis. MMP7 was highly expressed in CRC and correlated with CMS4 and poor clinical prognosis. Small molecular drugs such as δ-tocotrienol, 3,4-benzopyrene, tea polyphenols, and gallic catechin served as potential targeted therapeutic drugs for F. nucleatum induced MMP7 in CRC. CONCLUSIONS: Our study showed that F. nucleatum promoted metastasis-related characteristics of CRC cell by upregulating MMP7 via MAPK(JNK)-AP1 axis. F. nucleatum and MMP7 may serve as potential therapeutic targets for repressing CRC advance and metastasis.


Colorectal Neoplasms , Fusobacterium Infections , Humans , Fusobacterium nucleatum/genetics , Matrix Metalloproteinase 7/genetics , Colorectal Neoplasms/pathology , Molecular Docking Simulation , Fusobacterium Infections/complications , Fusobacterium Infections/diagnosis , Fusobacterium Infections/microbiology
...