Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Exp Biol Med (Maywood) ; 248(23): 2440-2448, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38158699

RESUMEN

The mammalian target of rapamycin (mTOR) inhibitors, everolimus (but not dactolisib), is frequently associated with lung injury in clinical therapies. However, the underlying mechanisms remain unclear. Endothelial cell barrier dysfunction plays a major role in the pathogenesis of the lung injury. This study hypothesizes that everolimus increases pulmonary endothelial permeability, which leads to lung injury. We tested the effects of everolimus on human pulmonary microvascular endothelial cell (HPMEC) permeability and a mouse model of intraperitoneal injection of everolimus was established to investigate the effect of everolimus on pulmonary vascular permeability. Our data showed that everolimus increased human pulmonary microvascular endothelial cell (HPMEC) permeability which was associated with MLC phosphorylation and F-actin stress fiber formation. Furthermore, everolimus induced an increasing concentration of intracellular calcium Ca2+ leakage in HPMECs and this was normalized with ryanodine pretreatment. In addition, ryanodine decreased everolimus-induced phosphorylation of PKCα and MLC, and barrier disruption in HPMECs. Consistent with in vitro data, everolimus treatment caused a visible lung-vascular barrier dysfunction, including an increase in protein in BALF and lung capillary-endothelial permeability, which was significantly attenuated by pretreatment with an inhibitor of PKCα, MLCK, and ryanodine. This study shows that everolimus induced pulmonary endothelial hyper-permeability, at least partly, in an MLC phosphorylation-mediated EC contraction which is influenced in a Ca2+-dependent manner and can lead to lung injury through mTOR-independent mechanisms.


Asunto(s)
Células Endoteliales , Lesión Pulmonar , Animales , Ratones , Humanos , Células Endoteliales/metabolismo , Everolimus/farmacología , Everolimus/metabolismo , Lesión Pulmonar/patología , Endotelio Vascular , Proteína Quinasa C-alfa/metabolismo , Proteína Quinasa C-alfa/farmacología , Rianodina/metabolismo , Rianodina/farmacología , Pulmón/metabolismo , Fosforilación , Células Cultivadas , Serina-Treonina Quinasas TOR/metabolismo , Mamíferos
2.
Biochem Biophys Res Commun ; 682: 180-186, 2023 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-37820453

RESUMEN

Temsirolimus is a first-generation mTOR inhibitor commonly used in the clinical treatment of cancers that is associated with lung injury. However, the mechanism underlying this adverse effect remains elusive. Endothelial barrier dysfunction plays a pivotal role in the infiltration of neutrophils into the pulmonary alveoli, which eventually induces lung injury. The present study demonstrates that temsirolimus induces the aberrant expression of adhesion molecules in endothelial cells, leading to enhanced neutrophil infiltration and subsequent lung injury. Results of a mouse model revealed that temsirolimus disrupted capillary-alveolar barrier function and facilitated neutrophil transmigration across the endothelium within the alveolar space. Consistent with our in vivo observations, temsirolimus impaired intercellular barrier function within monolayers of human lung endothelial cells, resulting in increased neutrophil infiltration. Furthermore, we demonstrated that temsirolimus-induced neutrophil transendothelial migration was mediated by platelet endothelial cell adhesion molecule-1 (PECAM-1) in both in vitro and in vivo experiments. Collectively, these findings highlight that temsirolimus induces endothelial barrier dysfunction via PECAM-1-dependent pathway both in vitro and in vivo, ultimately leading to neutrophil infiltration and subsequent pulmonary injury.


Asunto(s)
Lesión Pulmonar , Animales , Ratones , Humanos , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/metabolismo , Lesión Pulmonar/inducido químicamente , Lesión Pulmonar/metabolismo , Neutrófilos/metabolismo , Células Endoteliales/metabolismo , Migración Transendotelial y Transepitelial , Movimiento Celular , Endotelio Vascular/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA