Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 895
1.
Front Plant Sci ; 15: 1392175, 2024.
Article En | MEDLINE | ID: mdl-38736439

Wolfberry (Lycium, of the family Solanaceae) has special nutritional benefits due to its valuable metabolites. Here, 16 wolfberry-specific metabolites were identified by comparing the metabolome of wolfberry with those of six species, including maize, rice, wheat, soybean, tomato and grape. The copy numbers of the riboflavin and phenyllactate degradation genes riboflavin kinase (RFK) and phenyllactate UDP-glycosyltransferase (UGT1) were lower in wolfberry than in other species, while the copy number of the phenyllactate synthesis gene hydroxyphenyl-pyruvate reductase (HPPR) was higher in wolfberry, suggesting that the copy number variation of these genes among species may be the main reason for the specific accumulation of riboflavin and phenyllactate in wolfberry. Moreover, the metabolome-based neighbor-joining tree revealed distinct clustering of monocots and dicots, suggesting that metabolites could reflect the evolutionary relationship among those species. Taken together, we identified 16 specific metabolites in wolfberry and provided new insight into the accumulation mechanism of species-specific metabolites at the genomic level.

2.
Mol Biotechnol ; 2024 May 14.
Article En | MEDLINE | ID: mdl-38744786

Bladder cancer (BLCA) is a prevalent cancer type with an unmet need for new therapeutic strategies. Nucleoporin 93 (Nup93) is implicated in the pathophysiology of several cancers, but its relationship with bladder cancer remains unclear. Nup93 expression was analyzed in TCGA datasets and 88 BLCA patient samples. Survival analysis and Cox regression models evaluated the association between Nup93 levels and patient prognosis. BLCA cells were used to investigate the effects of Nup93 overexpression or knockdown on cell growth, invasion, stemness (sphere formation and ALDH2 + cancer stem cell marker), and Wnt/ß-catenin signaling in vitro. The Wnt activator BML-284 was used to confirm the involvement of Wnt/ß-catenin signaling pathway. A xenograft mouse model validated the in vitro findings. Nup93 was highly expressed in BLCA tissues and cell lines, and high Nup93 expression correlated with poor prognosis in BLCA patients. Nup93 silencing inhibited BLCA cell proliferation, Wnt/ß-catenin activation, and cancer cell stemness. Conversely, Nup93 overexpression promoted these effects. BML-284 partially rescued the reduction in cell growth and stemness markers caused by Nup93 knockdown. Nup93 knockdown also suppressed the tumor formation of BLCA cells in vivo. Nup93 regulates BLCA cell growth and stemness via the Wnt/ß-catenin pathway, suggesting its potential as a prognostic marker and therapeutic target in BLCA.

3.
Medicine (Baltimore) ; 103(19): e38066, 2024 May 10.
Article En | MEDLINE | ID: mdl-38728485

CDCA3, a cell cycle regulator gene that plays a catalytic role in many tumors, was initially identified as a regulator of cell cycle progression, specifically facilitating the transition from the G2 phase to mitosis. However, its role in glioma remains unknown. In this study, bioinformatics analyses (TCGA, CGGA, Rembrandt) shed light on the upregulation and prognostic value of CDCA3 in gliomas. It can also be included in a column chart as a parameter predicting 3- and 5-year survival risk (C index = 0.86). According to Gene Set Enrichment Analysis and gene ontology analysis, the biological processes of CDCA3 are mainly concentrated in the biological activities related to cell cycle such as DNA replication and nuclear division. CDCA3 is closely associated with many classic glioma biomarkers (CDK4, CDK6), and inhibitors of CDK4 and CDK6 have been shown to be effective in tumor therapy. We have demonstrated that high expression of CDCA3 indicates a higher malignancy and poorer prognosis in gliomas.


Biomarkers, Tumor , Brain Neoplasms , Cell Cycle Proteins , Glioma , Humans , Glioma/genetics , Glioma/metabolism , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Prognosis , Molecular Targeted Therapy/methods , Up-Regulation , Computational Biology/methods
4.
ACS Nano ; 2024 May 22.
Article En | MEDLINE | ID: mdl-38776362

High-energy-density lithium-metal batteries (LMBs) coupling lithium-metal anodes and high-voltage cathodes are hindered by unstable electrode/electrolyte interphases (EEIs), which calls for the rational design of efficient additives. Herein, we analyze the effect of electron structure on the coordination ability and energy levels of the additive, from the aspects of intramolecular electron cloud density and electron delocalization, to reveal its mechanism on solvation structure, redox stability, as-formed EEI chemistry, and electrochemical performances. Furthermore, we propose an electron reconfiguration strategy for molecular engineering of additives, by taking sorbide nitrate (SN) additive as an example. The lone pair electron-rich group enables strong interaction with the Li ion to regulate solvation structure, and intramolecular electron delocalization yields further positive synergistic effects. The strong electron-withdrawing nitrate moiety decreases the electron cloud density of the ether-based backbone, improving the overall oxidation stability and cathode compatibility, anchoring it as a reliable cathode/electrolyte interface (CEI) framework for cathode integrity. In turn, the electron-donating bicyclic-ring-ether backbone breaks the inherent resonance structure of nitrate, facilitating its reducibility to form a N-contained and inorganic Li2O-rich solid electrolyte interface (SEI) for uniform Li deposition. Optimized physicochemical properties and interfacial biaffinity enable significantly improved electrochemical performance. High rate (10 C), low temperature (-25 °C), and long-term stability (2700 h) are achieved, and a 4.5 Ah level Li||NCM811 multilayer pouch cell under harsh conditions is realized with high energy density (462 W h/kg). The proof of concept of this work highlights that the rational ingenious molecular design based on electron structure regulation represents an energetic strategy to modulate the electrolyte and interphase stability, providing a realistic reference for electrolyte innovations and practical LMBs.

5.
Front Med (Lausanne) ; 11: 1357260, 2024.
Article En | MEDLINE | ID: mdl-38784230

Background: Pulmonary alveolar microlithiasis (PAM) is a rare disease whose clinical and imaging manifestations are non-specific, characterized by the deposition of microliths, which primarily consist of calcium and phosphorus, within the alveoli. In the cases of PAM, patients combined with calcification of other organs such as gastric mucosal calcification are less common. Case presentation: A 59-year-old woman was admitted to our hospital due to cough producing white, foamy sputum, accompanied by dyspnea and fever for 20 days. The CT scan showed diffuse ground-glass opacities and calcification of the gastric mucosa. Lung tissue biopsy revealed the presence of calcification and granulomatous foreign bodies in the interstitium and alveolar cavity. In the later stages, she developed painful skin petechiae. For this patient, the diagnosis of PAM, gastric mucosal calcification, and purpura fulminans was made. However, the genetic test results hinted that the patient and her son had a heterozygous mutation in the FBN1 gene, but her daughter's genetic test results were normal. Although the patient received anti-infection treatment, steroids, and oxygen therapy, her condition did not improve. Conclusion: We reported a rare case of PAM combined with calcification of other organs and purpura fulminans. Treatment of steroids did not show any benefit. The causative mechanism and effective treatment of this disease remain unclear. More treatments need to be explored.

6.
Small Methods ; : e2301778, 2024 May 14.
Article En | MEDLINE | ID: mdl-38741551

With the rapid development and maturity of electrochemical CO2 conversion involving cathodic CO2 reduction reaction (CO2RR) and anodic oxygen evolution reaction (OER), conventional ex situ characterizations gradually fall behind in detecting real-time products distribution, tracking intermediates, and monitoring structural evolution, etc. Nevertheless, advanced in situ techniques, with intriguing merits like good reproducibility, facile operability, high sensitivity, and short response time, can realize in situ detection and recording of dynamic data, and observe materials structural evolution in real time. As an emerging visual technique, scanning electrochemical microscope (SECM) presents local electrochemical signals on various materials surface through capturing micro-current caused by reactants oxidation and reduction. Importantly, SECM holds particular potentials in visualizing reactive intermediates at active sites and obtaining instantaneous morphology evolution images to reveal the intrinsic reactivity of active sites. Therefore, this review focuses on SECM fundamentals and its specific applications toward CO2RR and OER, mainly including electrochemical behavior observation on local regions of various materials, target products and onset potentials identification in real-time, reaction pathways clarification, reaction kinetics exploration under steady-state conditions, electroactive materials screening and multi-techniques coupling for a joint utilization. This review undoubtedly provides a leading guidance to extend various SECM applications to other energy-related fields.

7.
Int J Mol Sci ; 25(9)2024 Apr 25.
Article En | MEDLINE | ID: mdl-38731885

Lysine is an essential amino acid that cannot be synthesized in humans. Rice is a global staple food for humans but has a rather low lysine content. Identification of the quantitative trait nucleotides (QTNs) and genes underlying lysine content is crucial to increase lysine accumulation. In this study, five grain and three leaf lysine content datasets and 4,630,367 single nucleotide polymorphisms (SNPs) of 387 rice accessions were used to perform a genome-wide association study (GWAS) by ten statistical models. A total of 248 and 71 common QTNs associated with grain/leaf lysine content were identified. The accuracy of genomic selection/prediction RR-BLUP models was up to 0.85, and the significant correlation between the number of favorable alleles per accession and lysine content was up to 0.71, which validated the reliability and additive effects of these QTNs. Several key genes were uncovered for fine-tuning lysine accumulation. Additionally, 20 and 30 QTN-by-environment interactions (QEIs) were detected in grains/leaves. The QEI-sf0111954416 candidate gene LOC_Os01g21380 putatively accounted for gene-by-environment interaction was identified in grains. These findings suggested the application of multi-model GWAS facilitates a better understanding of lysine accumulation in rice. The identified QTNs and genes hold the potential for lysine-rich rice with a normal phenotype.


Genome-Wide Association Study , Lysine , Oryza , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Oryza/genetics , Oryza/metabolism , Lysine/metabolism , Genome-Wide Association Study/methods , Phenotype , Gene-Environment Interaction , Edible Grain/genetics , Edible Grain/metabolism
8.
Soft Matter ; 20(20): 4052-4056, 2024 May 22.
Article En | MEDLINE | ID: mdl-38738402

Stimuli-responsive upconversion nanoparticle (UCNP)-poly-N-isopropylacrylamide (pNIPAM)/DNA core-shell microgels with tunable sizes and programmable functions have been prepared. Thanks to the near-infrared (NIR)-responsive UCNP cores and thermosensitive polymeric shells, functional DNA-incorporated microgels with high DNA activity and loading efficiency are obtained, and the activity of the loaded DNA structures can be smartly regulated by NIR illumination and temperature simultaneously.

9.
J Cutan Pathol ; 2024 May 03.
Article En | MEDLINE | ID: mdl-38699948

Lichen myxedematosus (LM) is a chronic cutaneous mucinosis that can present as a localized skin lesion or as a generalized systemic disease termed scleromyxedema. The differential diagnosis is determined by a combination of clinical presentation, serological studies, and histopathological examination. Currently, well-established and accepted histopathological features to distinguish localized LM from scleromyxedema have not been elucidated. Our recent publication, together with a retrospective literature review, suggests that the presence of groups of light chain-restricted plasma cells represents a distinct histopathological clue for the diagnosis of localized LM. In this report, we provide two additional cases of localized LM with lambda light chain-restricted plasma cells, together with clinical and histopathological findings that are similar to our previous publication. These cases support our theory that the light chain-restricted plasmacytic microenvironment is primarily attributed to the pathogenesis of localized LM. Therefore, we consider these cases to constitute a clinically and pathologically new variant of localized LM and name it primary localized cutaneous LM with light chain-restricted plasma cells.

10.
Nanoscale ; 2024 May 13.
Article En | MEDLINE | ID: mdl-38738309

The poor hydrostability of most reported metal-organic frameworks (MOFs) has become a daunting challenge in their practical applications. Recently, MOFs combined with multifunctional polymers can act as a functional platform and exhibit unique catalytic performance; they can not only inherit the outstanding properties of the two components but also offer unique synergistic effects. Herein, an original porous polymer-confined strategy has been developed to prepare a superhydrophobic MOF composite to significantly enhance its moisture or water resistance. The selective nucleation and growth of MOF nanocrystals confined in the pore of PDVB-vim are closely related to the structure-directing and coordination-modulating properties of PDVB-vim. The resultant MOF/PDVB-vim composite not only produces superior superhydrophobicity without significantly disturbing the original features but also exhibits a novel catalytic activity in the Friedel-Crafts alkylation reaction of indoles with trans-ß-nitrostyrene because of the accessible sites and synergistic effects.

11.
Research (Wash D C) ; 7: 0378, 2024.
Article En | MEDLINE | ID: mdl-38766643

The accumulation of senescent cells in kidneys is considered to contribute to age-related diseases and organismal aging. Mitochondria are considered a regulator of cell senescence process. Atrazine as a triazine herbicide poses a threat to renal health by disrupting mitochondrial homeostasis. Melatonin plays a critical role in maintaining mitochondrial homeostasis. The present study aims to explore the mechanism by which melatonin alleviates atrazine-induced renal injury and whether parkin-mediated mitophagy contributes to mitigating cell senescence. The study found that the level of parkin was decreased after atrazine exposure and negatively correlated with senescent markers. Melatonin treatment increased serum melatonin levels and mitigates atrazine-induced renal tubular epithelial cell senescence. Mechanistically, melatonin maintains the integrity of mitochondrial crista structure by increasing the levels of mitochondrial contact site and cristae organizing system, mitochondrial transcription factor A (TFAM), adenosine triphosphatase family AAA domain-containing protein 3A (ATAD3A), and sorting and assembly machinery 50 (Sam50) to prevent mitochondrial DNA release and subsequent activation of cyclic guanosine 5'-monophosphate-adenosine 5'-monophosphate synthase pathway. Furthermore, melatonin activates Sirtuin 3-superoxide dismutase 2 axis to eliminate the accumulation of reactive oxygen species in the kidney. More importantly, the antisenescence role of melatonin is largely determined by the activation of parkin-dependent mitophagy. These results offer novel insights into measures against cell senescence. Parkin-mediated mitophagy is a promising drug target for alleviating renal tubular epithelial cell senescence.

12.
J Hazard Mater ; 473: 134614, 2024 May 14.
Article En | MEDLINE | ID: mdl-38761767

This study aimed to investigate the association between long-term exposure to fine particulate matter (PM2.5) and its constituents (black carbon (BC), ammonium (NH4+), nitrate (NO3-), organic matter (OM), inorganic sulfate (SO42-)) and incident female breast cancer in Beijing, China. Data from a prospective cohort comprising 85,504 women enrolled in the National Urban Cancer Screening Program in Beijing (2013-2019) and the Tracking Air Pollution in China dataset are used. Monthly exposures were aggregated to calculate 5-year average concentrations to indicate long-term exposure. Cox models and mixture exposure models (weighted quantile sum, quantile-based g-computation, and explanatory machine learning model) were employed to analyze the associations. Findings indicated increased levels of PM2.5 and its constituents were associated with higher breast cancer risk, with hazard ratios per 1-µg/m3 increase of 1.02 (95% confidence interval (CI): 1.01, 1.03), 1.39 (95% CI: 1.16, 1.65), 1.28 (95% CI: 1.12, 1.46), 1.15 (95% CI: 1.05, 1.24), 1.05 (95% CI: 1.02, 1.08), and 1.15 (95% CI: 1.07, 1.23) for PM2.5, BC, NH4+, NO3-, OM, and SO42-, respectively. Exposure-response curves demonstrated a monotonic risk increase without an evident threshold. Mixture exposure models highlighted BC and SO42- as key factors, underscoring the importance of reducing emissions of these pollutants.

13.
J Clin Neurosci ; 124: 73-77, 2024 Jun.
Article En | MEDLINE | ID: mdl-38669904

OBJECTIVES: Few studies on ischemic complications and flow changes after a flow diverter covering the anterior cerebral artery. The purpose of the study was to explore the ischemic complications and anatomical alterations associated with the flow diverter after it covers the anterior cerebral artery. MATERIALS AND METHODS: In this single-center study, patients treated with FD covering the anterior cerebral artery at the First Affiliated Hospital of Zhengzhou University were retrospectively collected. The primary endpoint was ischemic complications related to the anterior cerebral artery. Secondary endpoints were anatomical changes in the anterior cerebral artery postoperatively and at follow-up. RESULTS: A total of 59 patients were included in this study. Four (6.8%) patients presented with ischemic stroke symptoms. Immediately after the procedure, complete occlusion of A1 and decreased blood flow was observed in 13 (22.0%) and 21 patients (35.6%), respectively. At follow-up, A1 artery was occluded in 34 patients (57.6%) and decreased blood flow was observed in 10 patients (16.9%). Symptoms of neurological deficits related to the anterior cerebral artery were not observed in all patients at follow-up. CONCLUSION: Coverage of A1 is safe, with a low incidence of ischemic stroke, when using an FD to treat aneurysms. Risk of reduced perfusion of the anterior cerebral artery postoperatively even if the anterior communicating artery is open. In cases with A1 occlusion, the blood flow in the distal the anterior cerebral artery can be adequately compensated by opening the anterior communicating artery and good vascular anastomoses.


Anterior Cerebral Artery , Humans , Male , Female , Anterior Cerebral Artery/surgery , Anterior Cerebral Artery/diagnostic imaging , Middle Aged , Retrospective Studies , Aged , Adult , Intracranial Aneurysm/surgery , Treatment Outcome , Postoperative Complications/epidemiology , Postoperative Complications/etiology , Follow-Up Studies , Cerebrovascular Circulation/physiology
14.
Int J Biol Macromol ; 268(Pt 2): 131697, 2024 May.
Article En | MEDLINE | ID: mdl-38688333

Immobilization technology plays an important role in enhancing enzyme stability and environmental adaptability. Despite its rapid development, this technology still encounters many challenges such as enzyme leakage, difficulties in large-scale implementation, and limited reusability. Drawing inspiration from natural paired molecules, this study aimed to establish a method for immobilized α-glucosidase using artificial antibody-antigen interaction. The proposed method consists of three main parts: synthesis of artificial antibodies, synthesis of artificial antigens, and assembly of the artificial antibody-antigen complex. The critical step in this method involves selecting a pair of structurally similar compounds: catechol as a template for preparing artificial antibodies and protocatechualdehyde for modifying the enzyme to create the artificial antigens. By utilizing the same functional groups in these compounds, specific recognition of the antigen by the artificial antibody can be achieved, thereby immobilizing the enzymes. The results demonstrated that the immobilization amount, specific activity, and enzyme activity of the immobilized α-glucosidase were 25.09 ± 0.10 mg/g, 5.71 ± 0.17 U/mgprotein and 143.25 ± 1.71 U/gcarrier, respectively. The immobilized α-glucosidase not only exhibited excellent reusability but also demonstrated remarkable performance in catalyzing the hydrolysis of 4-methylumbelliferyl-α-D-glucopyranoside.


Enzymes, Immobilized , Hymecromone , alpha-Glucosidases , Enzymes, Immobilized/chemistry , alpha-Glucosidases/chemistry , alpha-Glucosidases/immunology , Hymecromone/chemistry , Hymecromone/analogs & derivatives , Biocatalysis , Enzyme Stability , Hydrolysis , Biomimetics/methods , Kinetics , Antibodies/chemistry , Antibodies/immunology , Biomimetic Materials/chemistry , Antigen-Antibody Complex/chemistry , Hydrogen-Ion Concentration
15.
J Magn Reson Imaging ; 2024 Apr 11.
Article En | MEDLINE | ID: mdl-38602245

BACKGROUND: The detection rate of lung nodules has increased considerably with CT as the primary method of examination, and the repeated CT examinations at 3 months, 6 months or annually, based on nodule characteristics, have increased the radiation exposure of patients. So, it is urgent to explore a radiation-free MRI examination method that can effectively address the challenges posed by low proton density and magnetic field inhomogeneities. PURPOSE: To evaluate the potential of zero echo time (ZTE) MRI in lung nodule detection and lung CT screening reporting and data system (lung-RADS) classification, and to explore the value of ZTE-MRI in the assessment of lung nodules. STUDY TYPE: Prospective. POPULATION: 54 patients, including 21 men and 33 women. FIELD STRENGTH/SEQUENCE: Chest CT using a 16-slice scanner and ZTE-MRI at 3.0T based on fast gradient echo. ASSESSMENT: Nodule type (ground-glass nodules, part-solid nodules, and solid nodules), lung-RADS classification, and nodule diameter (manual measurement) on CT and ZTE-MRI images were recorded. STATISTICAL TESTS: The percent of concordant cases, Kappa value, intraclass correlation coefficient (ICC), Wilcoxon signed-rank test, Spearman's correlation, and Bland-Altman. The p-value <0.05 is considered significant. RESULTS: A total of 54 patients (age, 54.8 ± 11.9 years; 21 men) with 63 nodules were enrolled. Compared with CT, the total nodule detection rate of ZTE-MRI was 85.7%. The intermodality agreement of ZTE-MRI and CT lung nodules type evaluation was substantial (Kappa = 0.761), and the intermodality agreement of ZTE-MRI and CT lung-RADS classification was moderate (Kappa = 0.592). The diameter measurements between ZTE-MRI and CT showed no significant difference and demonstrated a high degree of interobserver (ICC = 0.997-0.999) and intermodality (ICC = 0.956-0.985) agreements. DATA CONCLUSION: The measurement of nodule diameter by pulmonary ZTE-MRI is similar to that by CT, but the ability of lung-RADS to classify nodes from MRI images still requires further research. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY: Stage 2.

16.
Front Aging Neurosci ; 16: 1285905, 2024.
Article En | MEDLINE | ID: mdl-38685909

Introduction: Novelty detection (ND, also known as one-class classification) is a machine learning technique used to identify patterns that are typical of the majority class and can discriminate deviations as novelties. In the context of Alzheimer's disease (AD), ND could be employed to detect abnormal or atypical behavior that may indicate early signs of cognitive decline or the presence of the disease. To date, few research studies have used ND to discriminate the risk of developing AD and mild cognitive impairment (MCI) from healthy controls (HC). Methods: In this work, two distinct cohorts with highly heterogeneous data, derived from the Australian Imaging Biomarkers and Lifestyle (AIBL) Flagship Study of Ageing project and the Fujian Medical University Union Hospital (FMUUH) China, were employed. An innovative framework with built-in easily interpretable ND models constructed solely on HC data was introduced along with proposing a strategy of distance to boundary (DtB) to detect MCI and AD. Subsequently, a web-based graphical user interface (GUI) that incorporates the proposed framework was developed for non-technical stakeholders. Results: Our experimental results indicate that the best overall performance of detecting AD individuals in AIBL and FMUUH datasets was obtained by using the Mixture of Gaussian-based ND algorithm applied to single modality, with an AUC of 0.8757 and 0.9443, a sensitivity of 96.79% and 89.09%, and a specificity of 89.63% and 90.92%, respectively. Discussion: The GUI offers an interactive platform to aid stakeholders in making diagnoses of MCI and AD, enabling streamlined decision-making processes. More importantly, the proposed DtB strategy could visually and quantitatively identify individuals at risk of developing AD.

17.
Neurol Res Int ; 2024: 5200222, 2024.
Article En | MEDLINE | ID: mdl-38595695

Background: Alzheimer's disease (AD) and type 2 diabetes mellitus (T2DM) are two widespread chronic disorders characterized by shared risk factors and molecular pathways. Glucose metabolism, pivotal for cellular homeostasis and energy supply, plays a critical role in these diseases. Its disturbance has been linked to the pathogenesis of both AD and T2DM. However, a comprehensive investigation into the specific roles of glucometabolic genes in the onset and progression of AD and T2DM has yet to be conducted. Methods: By analyzing microarray datasets from the Gene Expression Omnibus (GEO) repository, we identified differentially expressed glucometabolic genes (DEGs) in AD and T2DM cohorts. A range of bioinformatics tools were employed for functional annotation, pathway enrichment, protein interaction network construction, module analysis, ROC curve assessment, correlation matrix construction, gene set enrichment analysis, and gene-drug interaction mapping of these DEGs. Key genes were further validated using quantitative real-time polymerase chain reaction (qRT-PCR) in AD and T2DM murine models. Results: Our investigation identified 41 glucometabolic-related DEGs, with six prominent genes (G6PD, PKM, ENO3, PFKL, PGD, and TALDO1) being common in both AD and T2DM cohorts. These genes play crucial roles in metabolic pathways including glycolysis, pentose phosphate pathway, and amino sugar metabolism. Their diagnostic potential was highlighted by area under curve (AUC) values exceeding 0.6 for AD and 0.8 for T2DM. Further analysis explored the interactions, pathway enrichments, regulatory mechanisms, and potential drug interactions of these key genes. In the AD murine model, quantitative real-time polymerase chain reaction (qRT-PCR) analysis revealed significant upregulation of G6pd, Eno3, and Taldo1. Similarly, in the T2DM murine model, elevated expression levels of G6pd, Pfkl, Eno3, and Pgd were observed. Conclusion: Our rigorous research sheds light on the molecular interconnections between AD and T2DM from a glucometabolic perspective, revealing new opportunities for pharmacological innovation and therapeutic approaches. This study appears to be the first to extensively investigate glucometabolic-associated DEGs and key genes in both AD and T2DM, utilizing multiple datasets. These insights are set to enhance our understanding of the complex pathophysiology underlying these widespread chronic diseases.

18.
World J Gastrointest Oncol ; 16(3): 732-749, 2024 Mar 15.
Article En | MEDLINE | ID: mdl-38577468

BACKGROUND: Gastric cancer has a high incidence and fatality rate, and surgery is the preferred course of treatment. Nonetheless, patient survival rates are still low, and the incidence of major postoperative complications cannot be disregarded. The systemic inflammatory response, nutritional level, and coagulation status are key factors affecting the postoperative recovery and prognosis of gastric cancer patients. The systemic inflammatory response index (SIRI) and the albumin fibrinogen ratio (AFR) are two valuable comprehensive indicators of the severity and prognosis of systemic inflammation in various medical conditions. AIM: To assess the clinical importance and prognostic significance of the SIRI scores and the AFR on early postoperative outcomes in patients undergoing radical gastric cancer surgery. METHODS: We conducted a retrospective analysis of the clinicopathological characteristics and relevant laboratory indices of 568 gastric cancer patients from January 2018 to December 2019. We calculated and compared two indicators of inflammation and then examined the diagnostic ability of combined SIRI and AFR values for serious early postoperative complications. We scored the patients and categorized them into three groups based on their SIRI and AFR levels. COX analysis was used to compare the three groups of patients the prognostic value of various preoperative SIRI-AFR scores for 5-year overall survival (OS) and disease-free survival (DFS). RESULTS: SIRI-AFR scores were an independent risk factor for prognosis [OS: P = 0.004; hazards ratio (HR) = 3.134; DFS: P < 0.001; HR = 3.543] and had the highest diagnostic power (area under the curve: 0.779; 95% confidence interval: 0.737-0.820) for early serious complications in patients with gastric cancer. The tumor-node-metastasis stage (P = 0.001), perioperative transfusion (P = 0.044), positive carcinoembryonic antigen (P = 0.014) findings, and major postoperative complications (P = 0.011) were factors associated with prognosis. CONCLUSION: Preoperative SIRI and AFR values were significantly associated with early postoperative survival and the occurrence of severe complications in gastric cancer patients.

19.
Front Microbiol ; 15: 1372069, 2024.
Article En | MEDLINE | ID: mdl-38577684

Introduction: Hepatitis E virus (HEV), with heightened virulence in immunocompromised individuals and pregnant women, is a pervasive threat in developing countries. A globaly available vaccine against HEV is currently lacking. Methods: We designed a multi-epitope vaccine based on protein ORF2 and ORF3 of HEV using immunoinformatics. Results: The vaccine comprised 23 nontoxic, nonallergenic, soluble peptides. The stability of the docked peptide vaccine-TLR3 complex was validated by molecular dynamic simulations. The induction of effective cellular and humoral immune responses by the multi-peptide vaccine was verified by simulated immunization. Discussion: These findings provide a foundation for future HEV vaccine studies.

20.
Postgrad Med ; : 1-12, 2024 Apr 03.
Article En | MEDLINE | ID: mdl-38567398

BACKGROUND: There is an ongoing debate regarding the comparative merits of splenectomy (SP) and splenic preservation in the surgical management of gastric cancer. This systematic review and meta-analysis aims to shed light on potential differences in survival outcomes and postoperative complications associated with these two procedures. METHOD: An exhaustive literature search was conducted across multiple databases, namely PubMed, Embase, Cochrane Library, and Web of Science. We utilized a random-effects model via RevMan 5.4 software to conduct a meta-analysis of the hazard ratios (HRs) and risk ratios (RRs) associated with SP and spleen preservation. Subgroup analyses were based on various attributes of the included studies. We employed funnel plots to assess publication bias, and sensitivity analysis was conducted to gauge the stability of the combined results. Both funnel plots and sensitivity analysis were performed using Stata 12. RESULT: Our research incorporated 23 observational studies and three randomized controlled trials, involving a total of 6,255 patients. SP did not yield superior survival outcomes in comparison to splenic preservation, a conclusion that aligns with the combined results of the randomized controlled trials. No statistically significant difference in survival prognosis was observed between SP and splenic preservation, irrespective of whether the patients had proximal gastric cancer or proximal gastric cancer invading the stomach's greater curvature. SP exhibited a higher incidence of all postoperative complications, notably pancreatic fistula and intraabdominal abscesses. However, it did not significantly differ from splenic preservation in terms of anastomotic leakage, incision infection, intestinal obstruction, intra-abdominal bleeding, and pulmonary infection. No significant difference in postoperative mortality between SP and splenic preservation was found. Funnel plots suggested no notable publication bias, and sensitivity analysis affirmed the stability of the combined outcomes. CONCLUSION: Despite the lack of significant differences in certain individual complications and postoperative mortality, the broader pattern of our data suggests that SP is associated with a greater overall frequency of postoperative complications, without providing additional survival benefits compared to splenic preservation. Thus, the routine implementation of SP is not advocated.


When doctors perform surgery for gastric (stomach) cancer, they sometimes remove the spleen, a procedure known as splenectomy (SP). However, there's a debate on whether removing the spleen is better than preserving it. Our study aimed to compare these two methods in terms of patient survival and the risk of complications after surgery. To do this, we looked at data from 26 studies involving 6,255 patients. Our analysis was thorough, using advanced statistical methods to ensure accuracy. Here's what we found: patients who had their spleen removed did not live longer than those who kept their spleen. Whether the cancer was just in the upper part of the stomach or had spread to the nearby large curve of the stomach, the survival rates were similar for both groups. Patients who underwent SP faced more postoperative complications, especially issues like pancreatic fistula and intra-abdominal abscesses. However, for some complications like leakage from the surgical joint, infection of the wound, bowel obstruction, internal bleeding, and lung infections, there was no significant difference between the two groups. The chances of dying post-surgery were similar whether patients had their spleen removed or not. Our findings suggest that routinely removing the spleen during gastric cancer surgery does not improve survival rates and is linked to more postoperative complications. Therefore, it may be better to avoid removing the spleen unless absolutely necessary.

...