Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 233
Filtrar
1.
Food Chem ; 459: 140357, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-39003851

RESUMEN

In-depth research into the precise evaluation of enzymatic digestion efficiency and the selection of a suitable deuterium-labelled internal standard remains a gap in the accurate determination of ß2-agonists in animal-derived food by isotope dilution-liquid chromatography/tandem mass spectrometry (ID-LC-MS/MS). In this study, the enzymatic digestion conditions were optimized by monitoring the presence of ß2-agonist conjugates in positive samples, which proved to be reliable for ensuring complete enzymatic digestion. Comparative analysis of deuterium-labelled internal standards for salbutamol (SAL), ractopamine (RAC), and clenbuterol (CLB) revealed that CLB-D6 and SAL-D9 were less effective in compensating for matrix effects due to hydrogen­deuterium exchange during MS fragment formation. Consequently, SAL-D3, RAC-D3 and CLB-D9 were chosen for the implementation of ID-LC-MS/MS. The developed method demonstrates high accuracy and precision, with the average recoveries ranging from 93.8% to 107.3% with RSD <6.1%, which can provide higher-order measurement results for ß2-agonists in pork.

2.
Front Oncol ; 14: 1360158, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38835384

RESUMEN

Mixed germ cell tumors (mGCTs) involving both the ovaries and sellar region have been rarely reported; thus, they pose significant challenges in clinical management. Our report of a case of a 26-year-old female with left ovarian mGCTs (dysgerminoma + yolk sac tumor) who presented with postoperative headaches and blurred vision contributes new information to the literature on treating mGCTs, which can lead to standardized regimens and sequencing guidelines. A physical examination revealed right temporal hemianopia, and elevated levels of alpha-fetoprotein were detected in serum and cerebrospinal fluid. Magnetic resonance imaging (MRI) of the sellar region revealed a space-occupying lesion. Pathological examination of the tumor after endoscopic transnasal resection confirmed the diagnosis of mGCTs (germinomas + yolk sac tumor). The patient received adjuvant chemotherapy and radiotherapy at reduced dosages. During follow-up, tumor markers remained within normal limits, and there was no evidence of tumor recurrence on sellar region MRI. This case highlights the rarity of the simultaneous occurrence of ovarian and sellar region mGCTs and emphasizes the importance of accurate diagnosis and multidisciplinary management.

3.
J Med Chem ; 67(13): 10967-10985, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38943600

RESUMEN

Antibody-based targeted therapy in cancer faces a challenge due to uneven antibody distribution in solid tumors, hindering effective drug delivery. We addressed this by developing peptide mimetics with nanomolar-range affinity for Receptor Tyrosine Kinase-Like Orphan Receptor 1 (ROR1) using computational methods. These peptides showed both specific targeting and deep penetration in vitro and in vivo. Additionally, we created peptide-drug conjugates (PDCs) by linking targeting peptides to toxin drugs via various linkers and enhancing their in vivo half-life with fatty side chains for albumin binding. The antitumor candidate II-3 displayed exceptional affinity (KD = 1.72 × 10-9 M), internalization efficiency, anticancer potency (IC50 = 0.015 ± 0.002 µM), and pharmacokinetics (t1/2 = 2.6 h), showcasing a rational approach for designing PDCs with favorable tissue distribution and strong tumor penetration.


Asunto(s)
Péptidos , Humanos , Animales , Péptidos/química , Péptidos/farmacología , Ratones , Línea Celular Tumoral , Antineoplásicos/química , Antineoplásicos/farmacología , Antineoplásicos/farmacocinética , Antineoplásicos/uso terapéutico , Inmunoconjugados/química , Inmunoconjugados/farmacología , Inmunoconjugados/farmacocinética , Inmunoconjugados/uso terapéutico , Neoplasias/tratamiento farmacológico , Femenino , Ratones Endogámicos BALB C
4.
Int J Mol Sci ; 25(12)2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38928416

RESUMEN

A homozygous mutation of the DNAJC6 gene causes autosomal recessive familial type 19 of Parkinson's disease (PARK19). To test the hypothesis that PARK19 DNAJC6 mutations induce the neurodegeneration of dopaminergic cells by reducing the protein expression of functional DNAJC6 and causing DNAJC6 paucity, an in vitro PARK19 model was constructed by using shRNA-mediated gene silencing of endogenous DANJC6 in differentiated human SH-SY5Y dopaminergic neurons. shRNA targeting DNAJC6 induced the neurodegeneration of dopaminergic cells. DNAJC6 paucity reduced the level of cytosolic clathrin heavy chain and the number of lysosomes in dopaminergic neurons. A DNAJC6 paucity-induced reduction in the lysosomal number downregulated the protein level of lysosomal protease cathepsin D and impaired macroautophagy, resulting in the upregulation of pathologic α-synuclein or phospho-α-synucleinSer129 in the endoplasmic reticulum (ER) and mitochondria. The expression of α-synuclein shRNA or cathepsin D blocked the DNAJC6 deficiency-evoked degeneration of dopaminergic cells. An increase in ER α-synuclein or phospho-α-synucleinSer129 caused by DNAJC6 paucity activated ER stress, the unfolded protein response and ER stress-triggered apoptotic signaling. The lack of DNAJC6-induced upregulation of mitochondrial α-synuclein depolarized the mitochondrial membrane potential and elevated the mitochondrial level of superoxide. The DNAJC6 paucity-evoked ER stress-related apoptotic cascade, mitochondrial malfunction and oxidative stress induced the degeneration of dopaminergic neurons via activating mitochondrial pro-apoptotic signaling. In contrast with the neuroprotective function of WT DNAJC6, the PARK19 DNAJC6 mutants (Q789X or R927G) failed to attenuate the tunicamycin- or rotenone-induced upregulation of pathologic α-synuclein and stimulation of apoptotic signaling. Our data suggest that PARK19 mutation-induced DNAJC6 paucity causes the degeneration of dopaminergic neurons via downregulating protease cathepsin D and upregulating neurotoxic α-synuclein. Our results also indicate that PARK19 mutation (Q789X or R927G) impairs the DNAJC6-mediated neuroprotective function.


Asunto(s)
Catepsina D , Neuronas Dopaminérgicas , Estrés del Retículo Endoplásmico , Proteínas del Choque Térmico HSP40 , alfa-Sinucleína , Humanos , alfa-Sinucleína/metabolismo , alfa-Sinucleína/genética , Apoptosis/genética , Catepsina D/metabolismo , Catepsina D/genética , Línea Celular Tumoral , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología , Regulación hacia Abajo , Proteínas del Choque Térmico HSP40/metabolismo , Proteínas del Choque Térmico HSP40/genética , Lisosomas/metabolismo , Mitocondrias/metabolismo , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/patología , Regulación hacia Arriba
5.
Exp Ther Med ; 28(1): 278, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38800050

RESUMEN

The present study aimed to conduct a comprehensive meta-analysis to assess the diagnostic value of fluorometric assays and tandem mass spectrometry (MS/MS) for hyperphenylalaninemia (HPA) and its subtypes. The PubMed, Embase and Cochrane Library databases were searched from inception to October 2023. The present study included studies that reported the newborn screening and genetic features of patients with HPA and excluded duplicate publications, studies without full text, studies with incomplete information, studies from which it was not possible to extract data, animal experiments, reviews and systematic reviews. STATA 15.1 was used to analyze the data. The pooled results revealed that 0.04% [95% confidence interval (CI): 0.019-0.069] of neonatal HPA fluorometric assays and MS/MS. The positive predictive value (PPV) of neonatal HPA screening using fluorometric assays and tandem mass spectrometry was 31.7% (95% CI: 19.6-45.2). Notably, the PPV of neonatal HPA screening using fluorometric assays was 8.3% (95% CI: 7.1-9.6), while the PPV of neonatal HPA screening using tandem mass spectrometry was 31.8% (95% CI: 16.4-49.4). Additionally, the pooled results showed that the incidence of tetrahydrobiopterin deficiency (BH4D) in HPA patients was 12.43% (95% CI: 3.28-25.75) and the incidence of phenylalanine hydroxylase deficiency (PAHD) in HPA patients was 88.65% (95% CI: 78.84-95.86). Newborn screening is an effective method for the early detection of HPA and MS/MS has a greater PPA than fluorometric assays for diagnosing HPA. In addition, in the screening of HPA, the proportion of HPA patients with PAHD was significantly higher than that of patients with BH4D.

6.
Food Chem X ; 22: 101468, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38817979

RESUMEN

A simple, rapid and novel method involving ultrahigh-performance liquid chromatography-electrospray ionization tandem triple quadrupole mass spectrometry (UHPLC-ESI-MS/MS) was developed to simultaneously detect erythromycin, its major metabolite and clarithromycin in chicken tissues (muscle, liver and kidney) and eggs (whole egg, albumen and yolk). Samples were extracted using acetonitrile-water (80:20, v/v), and a Cleanert MAS-Q cartridge was used to perform quick, easy, cheap, effective, rugged, and safe (QuEChERS) purification. The average recoveries were 87.78-104.22 %, and the corresponding intraday and interday relative standard deviations were less than 7.10 %. The decision limits and detection capabilities of the chicken tissues and eggs were 2.15-105.21 µg/kg and 2.26-110.42 µg/kg, respectively. For chicken tissues and eggs, the limits of detection and limits of quantification were 0.5 µg/kg and 2.0 µg/kg, respectively. The proposed method was successfully employed to analyse real samples, demonstrating its applicability.

7.
Environ Res ; 255: 119187, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38777295

RESUMEN

The issue of combined pollution in oligotrophic water has garnered increasing attention in recent years. To enhance the pollutant removal efficiency in oligotrophic water, the system containing Zoogloea sp. FY6 was constructed using polyester fiber wrapped sugarcane biochar and construction waste iron (PWSI), and the denitrification test of simulated water and actual oligotrophic water was carried out for 35 days. The experimental findings from the systems indicated that the removal efficiencies of nitrate (NO3--N), total nitrogen (TN), chemical oxygen demand (COD), and total phosphorus (TP) in simulated water were 88.61%, 85.23%, 94.28%, and 98.90%, respectively. The removal efficiencies of actual oligotrophic water were 83.06%, 81.39%, 81.66%, and 97.82%, respectively. Furthermore, the high-throughput sequencing data demonstrated that strain FY6 was successfully loaded onto the biological carrier. According to functional gene predictions derived from the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, the introduction of PWSI enhanced intracellular iron cycling and nitrogen metabolism.


Asunto(s)
Carbón Orgánico , Hierro , Nitrógeno , Fósforo , Contaminantes Químicos del Agua , Fósforo/análisis , Nitrógeno/análisis , Nitrógeno/metabolismo , Carbón Orgánico/química , Hierro/química , Contaminantes Químicos del Agua/análisis , Eliminación de Residuos Líquidos/métodos
8.
Cardiorenal Med ; 14(1): 334-349, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38801815

RESUMEN

INTRODUCTION: Large prospective trials have demonstrated that finerenone could reduce the risk of cardiovascular death and progression of renal failure among patients with chronic kidney disease associated heart failure and/or type 2 diabetes mellitus (T2DM). The aim of this study was to explore the molecular mechanism of finerenone in the treatment of cardiorenal diseases through network pharmacology. METHODS: The STITH, SwissTargetPrediction, PharmMapper, DrugBank, and ChEMBL databases were used to screen the targets of finerenone. The disease-related targets were retrieved from the DisGeNET, GeneCards, CTD, OMIM, and MalaCards databases. The protein-protein interaction (PPI) network was conducted with STRING database and Cytoscape software. The clusterProfiler R package was used to perform Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. The interactions of key targets and finerenone were analyzed by molecular docking in Autodock software. Diabetes mellitus was induced by intraperitoneal injection of streptozotocin. Histopathology of myocardial and renal tissues was observed by hematoxylin-eosin (HE) staining, and detection of protein expressions was conducted using Western blotting. RESULTS: A total of 111 potential cardiorenal targets of finerenone were identified. The main mechanisms of action may be associated with lipids and atherosclerosis, fluid shear stress and atherosclerosis, AGE-RAGE signaling pathway in diabetic complications, and diabetic cardiomyopathy. The hub targets demonstrated by the PPI network were CASP3, ALB, MMP9, EGFR, ANXA5, IGF1, SRC, TNFRSF1A, IL2, and PPARG, and the docking results suggested that finerenone could bind to these targets with high affinities. HE staining revealed the cardiorenal protection of finerenone on diabetic mice. In addition, the protein expressions of CASP3 and EGFR were increased while ALB was decreased in myocardial and renal tissues in diabetic mice compared with control mice, which were reversed by finerenone. CONCLUSION: This study suggested that finerenone exerts cardiorenal benefits through multiple targets and pathways.


Asunto(s)
Diabetes Mellitus Experimental , Simulación del Acoplamiento Molecular , Naftiridinas , Farmacología en Red , Naftiridinas/farmacología , Animales , Ratones , Diabetes Mellitus Experimental/complicaciones , Mapas de Interacción de Proteínas , Masculino , Receptores ErbB/metabolismo , Receptores ErbB/efectos de los fármacos , Humanos , Riñón/efectos de los fármacos , Riñón/metabolismo , Riñón/patología , Ratones Endogámicos C57BL , Antagonistas de Receptores de Mineralocorticoides/farmacología , Antagonistas de Receptores de Mineralocorticoides/uso terapéutico , Insuficiencia Cardíaca/tratamiento farmacológico
9.
J Chromatogr A ; 1723: 464716, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38640881

RESUMEN

Saposhnikoviae Radix (SR) may enhance the pharmacodynamics of Huangqi Chifeng Tang (HQCFT) in the treatment of cerebral infarction according to our previous research, but the underlying mechanism is unknown. Herein, an in vivo pharmacokinetic assay in rats and in vitro MDCK-MDR1 cell assays were used to investigate the possible mechanism of SR, its main components, and its interactions with Astragali Radix (AR) and Paeoniae Radix (PR). An ultrahigh-performance liquid chromatography-tandem mass spectrometry (UPLC‒MS/MS)-based analytical method for quantifying astragaloside IV (ASIV) and paeoniflorin (PAE) in microdialysis and transport samples was developed. The pharmacokinetic parameters of SR were determined using noncompartmental analyses CCK-8 assays were used to detect the cytotoxicity of ASIV, PAE, cimifugin (CIM), prim-o-glucosylcimifugin (POG) and their combinations. Moreover, drug transport was studied using MDCK-MDR1 cells. Western blotting was performed to measure the protein expression levels of P-GP and MRP1. Claudin-5, ZO-1, and F-actin expression was determined via immunohistochemical staining of MDCK-MDR1 cells. harmacokinetic studies revealed that, compared with those of Huangqi Chifeng Tang-Saposhnikoviae Radix (HQCFT-SR), the Tmax of ASIV increased by 11.11 %, and the MRT0-t and Tmax of PAE increased by 11.19 % and 20 %, respectively, in the HQCFT group. Transport studies revealed that when ASIV was coincubated with 28 µM CIM or POG, the apparent permeability coefficient (Papp) increased by 71.52 % and 50.33 %, respectively. Coincubation of PAE with 120 µM CIM or POG increased the Papp by 87.62 % and 60.95 %, respectively. Moreover, CIM and POG significantly downregulated P-gp and MRP1 (P < 0.05), inhibited the expression of Claudin-5, ZO-1, and F-actin (P < 0.05), and affected intercellular tight junctions (TJs). In conclusion, our study successfully established a selective, sensitive and reproducible UPLC‒MS/MS analytical method to detect drug‒drug interactions between SR, AR and PR in vivo and in vitro, which is beneficial for enhancing the therapeutic efficacies of AR and PR. Moreover, this study provides a theoretical basis for further research on the use of SR as a drug carrier.


Asunto(s)
Medicamentos Herbarios Chinos , Glucósidos , Monoterpenos , Ratas Sprague-Dawley , Saponinas , Espectrometría de Masas en Tándem , Triterpenos , Animales , Glucósidos/farmacocinética , Glucósidos/análisis , Glucósidos/química , Glucósidos/farmacología , Saponinas/farmacocinética , Saponinas/farmacología , Saponinas/química , Saponinas/análisis , Monoterpenos/análisis , Triterpenos/farmacología , Triterpenos/farmacocinética , Triterpenos/química , Triterpenos/análisis , Perros , Ratas , Células de Riñón Canino Madin Darby , Espectrometría de Masas en Tándem/métodos , Masculino , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/farmacocinética , Cromatografía Líquida de Alta Presión/métodos , Apiaceae/química , Interacciones de Hierba-Droga , Interacciones Farmacológicas , Reproducibilidad de los Resultados
10.
Adv Healthc Mater ; : e2400307, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38573778

RESUMEN

Ferroptosis induction is an emerging strategy for tumor therapy. Reactive oxygen species (ROS) can induce ferroptosis but are easily consumed by overexpressed glutathione (GSH) in tumor cells. Therefore, achieving a large amount of ROS production in tumor cells without being consumed is key to efficiently inducing ferroptosis. In this study, a self-amplifying ferroptosis-inducing therapeutic agent, Pd@CeO2-Fe-Co-WZB117-DSPE-PEG-FA (PCDWD), is designed for tumor therapy. PCDWD exhibits excellent multi-enzyme activities due to the loading of Fe-Co dual atoms with abundant active sites, including peroxidase-like enzymes, catalase-like enzymes, and glutathione oxidases (GSHOx), which undergo catalytic reactions in the tumor microenvironment to produce ROS, thereby inducing ferroptosis. Furthermore, PCDWD can also deplete GSH in tumor cells, thus reducing the consumption of ROS by GSH and inhibiting the expression of GSH peroxidase 4. Moreover, the photothermal effect of PCDWD can not only directly kill tumor cells but also further enhance its own enzyme activities, consequently promoting ferroptosis in tumor cells. In addition, WZB117 can reduce the expression of heat shock protein 90 by inhibiting glucose transport, thereby reducing the thermal resistance of tumor cells and further improving the therapeutic effect. Finally, X-ray computed tomography imaging of PCDWD guides it to achieve efficient tumor therapy.

11.
J Hazard Mater ; 470: 134178, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38608581

RESUMEN

Triclocarban (TCC), an emerging organic contaminant, poses a potential threat to human health with long-term exposure. Here, Rhodococcus rhodochrous BX2 and Pseudomonas sp. LY-1 were utilized to degrade TCC at environmental related concentrations for enhancing TCC biodegradation and investigating whether the toxicity of intermediate metabolites is lower than that of the parent compound. The results demonstrated that the bacterial consortium could degrade TCC by 82.0% within 7 days. The calculated 96 h LC50 for TCC, as well as its main degradation product 3,4-Dichloroaniline (DCA) were 0.134 mg/L and 1.318 mg/L respectively. Biodegradation also alleviated histopathological lesions induced by TCC in zebrafish liver and gut tissues. Liver transcriptome analysis revealed that biodegradation weakened differential expression of genes involved in disrupted immune regulation and lipid metabolism caused by TCC, verified through RT-qPCR analysis and measurement of related enzyme activities and protein contents. 16 S rRNA sequencing indicated that exposure to TCC led to gut microbial dysbiosis, which was efficiently improved through TCC biodegradation, resulting in decreased relative abundances of major pathogens. Overall, this study evaluated potential environmental risks associated with biodegradation of TCC and explored possible biodetoxification mechanisms, providing a theoretical foundation for efficient and harmless bioremediation of environmental pollutants.


Asunto(s)
Biodegradación Ambiental , Carbanilidas , Microbioma Gastrointestinal , Hígado , Pseudomonas , Rhodococcus , Pez Cebra , Animales , Carbanilidas/toxicidad , Hígado/metabolismo , Hígado/efectos de los fármacos , Microbioma Gastrointestinal/efectos de los fármacos , Rhodococcus/metabolismo , Pseudomonas/metabolismo , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/metabolismo , Consorcios Microbianos/efectos de los fármacos , Compuestos de Anilina/toxicidad , Compuestos de Anilina/metabolismo , Inactivación Metabólica
12.
J Hazard Mater ; 471: 134313, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38669927

RESUMEN

Secondary lignification of the root exodermis of Kandelia obovata is crucial for its response to adversity such as high salinity and anaerobic environment, and this lignification is also effective in blocking cadmium transport to the roots. However, how the differences in lignification of root exodermis at different developmental stages respond to Cd stress and its regulatory mechanisms have not been revealed. In this study, after analyzing the root structure and cell wall thickness using a Phenom scanning electron microscope as well as measuring cadmium content in the root cell wall, we found that the exodermis of young and mature roots of K. obovata responded to Cd stress through the polymerization of different lignin monomers, forming two different mechanisms: chelation and blocking. Through small RNA sequencing, RLM-5'-RACE and dual luciferase transient expression system, we found that miR397 targets and regulates KoLAC4/17/7 expression. The expression of KoLAC4/17 promoted the accumulation of guaiacyl lignin during lignification and enhanced the binding of cadmium to the cell wall. Meanwhile, KoLAC7 expression promotes the accumulation of syringyl lignin during lignification, which enhances the obstruction of cadmium and improves the tolerance to cadmium. These findings enhance our understanding of the molecular mechanisms underlying the differential lignification of the root exodermis of K. obovata in response to cadmium stress, and provide scientific guidance for the conservation of mangrove forests under heavy metal pollution.


Asunto(s)
Cadmio , Lignina , MicroARNs , Raíces de Plantas , Lignina/química , Cadmio/toxicidad , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , MicroARNs/metabolismo , MicroARNs/genética , Estrés Fisiológico/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Polimerizacion/efectos de los fármacos , Pared Celular/efectos de los fármacos , Pared Celular/metabolismo , Araceae/efectos de los fármacos , Araceae/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética
13.
Regen Biomater ; 11: rbae020, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38529352

RESUMEN

Posterior capsule opacification (PCO) remains the predominant complication following cataract surgery, significantly impairing visual function restoration. In this study, we developed a PCO model that closely mimics the anatomical structure of the crystalline lens capsule post-surgery. The model incorporated a threaded structure for accurate positioning and observation, allowing for opening and closing. Utilizing 3D printing technology, a stable external support system was created using resin material consisting of a rigid, hollow base and cover. To replicate the lens capsule structure, a thin hydrogel coating was applied to the resin scaffold. The biocompatibility and impact on cellular functionality of various hydrogel compositions were assessed through an array of staining techniques, including calcein-AM/PI staining, rhodamine staining, BODIPY-C11 staining and EdU staining in conjunction with transwell assays. Additionally, the PCO model was utilized to investigate the effects of eight drugs with anti-inflammatory and anti-proliferative properties, including 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR), THZ1, sorbinil, 4-octyl itaconate (4-OI), xanthohumol, zebularine, rapamycin and caffeic acid phenethyl ester, on human lens epithelial cells (HLECs). Confocal microscopy facilitated comprehensive imaging of the PCO model. The results demonstrated that the GelMA 60 5% + PLMA 2% composite hydrogel exhibited superior biocompatibility and minimal lipid peroxidation levels among the tested hydrogels. Moreover, compared to using hydrogel as the material for 3D printing the entire model, applying surface hydrogel spin coating with parameters of 2000 rpm × 2 on the resin-based 3D printed base yielded a more uniform cell distribution and reduced apoptosis. Furthermore, rapamycin, 4-OI and AICAR demonstrated potent antiproliferative effects in the drug intervention study. Confocal microscopy imaging revealed a uniform distribution of HLECs along the anatomical structure of the crystalline lens capsule within the PCO model, showcasing robust cell viability and regular morphology. In conclusion, the PCO model provides a valuable experimental platform for studying PCO pathogenesis and exploring potential therapeutic interventions.

14.
Chemosphere ; 355: 141779, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38537709

RESUMEN

To ensure good air quality during the China International Import Expo (CIIE) event, stringent emission-reduction measures were implemented in Shanghai. To assess the efficacy of these measures, this study measured typical categories of intermediate/semi volatile organic compounds (I/SVOCs), including alkanes (C10-C26 n-alkanes and pristane), EPA-priority polycyclic aromatic hydrocarbons (PAHs), alkylnaphthalenes, benzothiazole (BTH) and chlorobenzenes (CBs), at an urban site of Shanghai before and during two CIIE events (2019 and 2020; non-CIIE versus CIIE). The average concentrations of alkanes and PAHs during both 2019 and 2020 CIIE events decreased by approximately 41% and 17%, respectively, compared to non-CIIE periods. However, the decline in BTH and CBs was only observed during CIIE-2019. Secondary organic aerosol (SOA) formation from alkanes, PAHs and BTH was evaluated under atmospheric conditions, revealing considerable SOA contributions from dimethylnaphthalenes and BTH. Positive matrix factorization (PMF) analysis further revealed that life-related sources, such as cooking and residential emissions, make a noticeable contribution (21.6%) in addition to the commonly concerned gasoline-vehicle sources (31.5%), diesel-related emissions (20.8%), industrial emissions (18.6%) and ship emissions (7.5%). These findings provide valuable insights into the efficacy of the implemented measures in reducing atmospheric I/SVOCs levels. Moreover, our results highlight the significance of exploring additional individual species of I/SVOCs and life-related sources for further research and policy development.


Asunto(s)
Contaminantes Atmosféricos , Hidrocarburos Policíclicos Aromáticos , Compuestos Orgánicos Volátiles , Contaminantes Atmosféricos/análisis , China , Compuestos Orgánicos Volátiles/análisis , Monitoreo del Ambiente/métodos , Alcanos/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , Aerosoles/análisis , Emisiones de Vehículos/análisis , Material Particulado/análisis
15.
Mol Plant ; 17(5): 725-746, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38486452

RESUMEN

Understanding the underlying mechanisms and links between genome evolution and adaptive innovations stands as a key goal in evolutionary studies. Poplars, among the world's most widely distributed and cultivated trees, exhibit extensive phenotypic diversity and environmental adaptability. In this study, we present a genus-level super-pangenome comprising 19 Populus genomes, revealing the likely pivotal role of private genes in facilitating local environmental and climate adaptation. Through the integration of pangenomes with transcriptomes, methylomes, and chromatin accessibility mapping, we unveil that the evolutionary trajectories of pangenes and duplicated genes are closely linked to local genomic landscapes of regulatory and epigenetic architectures, notably CG methylation in gene-body regions. Further comparative genomic analyses have enabled the identification of 142 202 structural variants across species that intersect with a significant number of genes and contribute substantially to both phenotypic and adaptive divergence. We have experimentally validated a ∼180-bp presence/absence variant affecting the expression of the CUC2 gene, crucial for leaf serration formation. Finally, we developed a user-friendly web-based tool encompassing the multi-omics resources associated with the Populus super-pangenome (http://www.populus-superpangenome.com). Together, the present pioneering super-pangenome resource in forest trees not only aids in the advancement of breeding efforts of this globally important tree genus but also offers valuable insights into potential avenues for comprehending tree biology.


Asunto(s)
Genoma de Planta , Populus , Populus/genética , Árboles/genética , Adaptación Fisiológica/genética , Bosques , Genómica , Transcriptoma/genética
16.
Angew Chem Int Ed Engl ; 63(12): e202317304, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38298089

RESUMEN

Pyroptosis is an effective anti-tumor strategy. However, monometallic pyroptosis biotuners have not been explored until now. Here, we discover for the first time that biodegradable monometallic Al can act as a pyroptosis biotuner for tumor therapy. pH-sensitive Al nanoparticles (Al@P) are obtained by equipping polyethylene glycol-b-(poly(methyl methacrylate)-co-poly(4-vinylpyridine), which can exert their effect at the tumor site without affecting normal cells. The H2 and Al3+ release by Al@P in the acidic environment of tumors disrupts the redox balance and ionic homeostasis in tumor cells, thus generating large amounts of reactive oxygen species (ROS), leading to caspase-1 activation, gasdermin D cleavage, and IL-1ß/LDH release, which induces canonical pyroptotic death. Meanwhile, the prodrug Doxorubicin (Pro-DOX) is successfully loaded onto Al@P (Al@P-P) and can be activated by ROS to release DOX in the tumor cells, thus further improving the tumor-killing efficiency. Ultimately, Al@P-P is degradable and exhibits efficient tumor inhibition.


Asunto(s)
Metacrilatos , Neoplasias , Polietilenglicoles , Piroptosis , Humanos , Aluminio/farmacología , Especies Reactivas de Oxígeno , Neoplasias/tratamiento farmacológico , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico
17.
Eur J Med Chem ; 267: 116208, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38325006

RESUMEN

Dual-acting drugs that simultaneously inhibit fatty acid amide hydrolase (FAAH) and antagonize the transient receptor potential vanilloid 1 (TRPV1) is a promising stronger therapeutic approach for pain management without side effects associated with single-target agents. Here, several series of dual FAAH/TRPV1 blockers were designed and synthesized through rational molecular hybridization between the pharmacophore of classical TRPV1 antagonists and FAAH inhibitors. The studies resulted in compound 2r, which exhibited strong dual FAAH/TRPV1 inhibition/antagonism in vitro, exerted powerful analgesic effects in formalin-induced pain test (phase II, in mice), desirable anti-inflammatory activity in carrageenan-induced paw edema in rats, no TRPV1-related hyperthermia side effect, and favorable pharmacokinetic properties. Meanwhile, the contributions of TRPV1 and FAAH to its antinociceptive effects were verified by target engagement and molecular docking studies. Overall, compound 2r can serve as a new scaffold for developing FAAH/TRPV1 dual-activie ligands to counteract pain.


Asunto(s)
Antineoplásicos , Manejo del Dolor , Ratas , Ratones , Animales , Simulación del Acoplamiento Molecular , Canales Catiónicos TRPV , Ácidos Araquidónicos , Dolor/tratamiento farmacológico , Amidohidrolasas/metabolismo , Antineoplásicos/uso terapéutico
18.
Dev Cell ; 59(7): 830-840.e4, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38377991

RESUMEN

Tissue repair requires a highly coordinated cellular response to injury. In the lung, alveolar type 2 cells (AT2s) act as stem cells to replenish both themselves and alveolar type 1 cells (AT1s); however, the complex orchestration of stem cell activity after injury is poorly understood. Here, we establish longitudinal imaging of AT2s in murine intact tissues ex vivo and in vivo in order to track their dynamic behavior over time. We discover that a large fraction of AT2s become motile following injury and provide direct evidence for their migration between alveolar units. High-resolution morphokinetic mapping of AT2s further uncovers the emergence of distinct motile phenotypes. Inhibition of AT2 migration via genetic depletion of ArpC3 leads to impaired regeneration of AT2s and AT1s in vivo. Together, our results establish a requirement for stem cell migration between alveolar units and identify properties of stem cell motility at high cellular resolution.


Asunto(s)
Células Epiteliales Alveolares , Pulmón , Ratones , Animales , Pulmón/fisiología , Células Epiteliales Alveolares/metabolismo , Células Madre/metabolismo , Movimiento Celular , Diferenciación Celular/fisiología
19.
Environ Res ; 246: 118159, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38218519

RESUMEN

Zoogloea sp. MFQ7 achieved excellent denitrification of 91.71% at ferrous to manganous ratio (Fe/Mn) of 3:7, pH of 6.5, nitrate concentration of 25 mg L-1 and carbon to nitrogen ratio of 1.5. As the Fe/Mn ratio increasd, the efficiency of nitrate removal gradually decreased, indicating that strain MFQ7 had a higher affinity for Mn2+ than Fe2+. In situ generated biogenic Fe-Mn oxides (BFMO) contained many iron-manganese oxides (MnO2, Mn3O4, FeO(OH), Fe2O3, and Fe3O4) as well as reactive functional groups, which play an significant part in tetracycline (TC) and cadmium (Cd2+) adsorption. The adsorption of TC and Cd2+ by BFMO can better fit the pseudo-second-order and Langmuir models. In addition, multiple characterization results of before and after adsorption indicated that the removal mechanism of BFMO on TC and Cd2+ was probably surface complexation adsorption and redox reactions.


Asunto(s)
Cadmio , Compuestos Férricos , Óxidos , Óxidos/química , Nitratos , Compuestos de Manganeso/química , Desnitrificación , Tetraciclina , Antibacterianos , Compuestos Orgánicos , Adsorción
20.
Spectrochim Acta A Mol Biomol Spectrosc ; 310: 123833, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38237498

RESUMEN

Based on the use of CQDs as fluorescent probe and covalent coupling method to detect biological molecules with amino groups, to deeply analysis and detect the metabolism of Microcystis aeruginosa. The metabolic changes of carboxyl biomolecules in Microcystis aeruginosa were analyzed by covalent coupling method, including GSH, phycocyanin and SOD enzyme. The changes of GSH content and its correlation between phycocyanin, SOD were analyzed. The content of phycocyanin and SOD reached the maximum on the 65th day, and GSH was more sensitive to the growth and metabolism of microalgae. GSH plays an important role in reducing the external oxidative damage of microalgae cells. The synthesis of glutathione (GSH), GSH/GSSG mutual transformation, the production of phytochelating peptide (PC), the ASA-GSH cycle, and other physiological processes are interconnected. These interactions are crucial for preserving the antioxidant properties of microalgae and regulating redox-sensitive signal transduction.


Asunto(s)
Microalgas , Puntos Cuánticos , Ficocianina/metabolismo , Microalgas/metabolismo , Puntos Cuánticos/química , Fluorescencia , Carbono/química , Glutatión/análisis , Antioxidantes/metabolismo , Superóxido Dismutasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...