Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Molecules ; 28(14)2023 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-37513256

RESUMEN

Nardosinone, a predominant bioactive product from Nardostachys jatamansi DC, is well-known for its promising therapeutic applications, such as being used as a drug on anti-inflammatory, antidepressant, cardioprotective, anti-neuroinflammatory, anti-arrhythmic, anti-periodontitis, etc. However, its stability under varying environmental conditions and its degradation products remain unclear. In this study, four main degradation products, including two previously undescribed compounds [2-deoxokanshone M (64.23%) and 2-deoxokanshone L (1.10%)] and two known compounds [desoxo-narchinol A (2.17%) and isonardosinone (3.44%)], were firstly afforded from the refluxed products of nardosinone in boiling water; their structures were identified using an analysis of the extensive NMR and X-ray diffraction data and the simulation and comparison of electronic circular dichroism spectra. Compared with nardosinone, 2-deoxokanshone M exhibited potent vasodilatory activity without any of the significant anti-neuroinflammatory activity that nardosinone contains. Secondly, UPLC-PDA and UHPLC-DAD/Q-TOF MS analyses on the degradation patterns of nardosinone revealed that nardosinone degraded more easily under high temperatures and in simulated gastric fluid compared with the simulated intestinal fluid. A plausible degradation pathway of nardosinone was finally proposed using nardosinonediol as the initial intermediate and involved multiple chemical reactions, including peroxy ring-opening, keto-enol tautomerization, oxidation, isopropyl cleavage, and pinacol rearrangement. Our findings may supply certain guidance and scientific evidence for the quality control and reasonable application of nardosinone-related products.


Asunto(s)
Sesquiterpenos , Sesquiterpenos/química , Temperatura , Sesquiterpenos Policíclicos , Antiinflamatorios
2.
Genome Biol Evol ; 14(2)2022 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-35106558

RESUMEN

The green peafowl (Pavo muticus) is facing a high risk of extinction due to the long-term and widespread threats of poaching and habitat conversion. Here, we present a high-quality chromosome-level genome assembly of the green peafowl with high contiguity and accuracy assembled by PacBio sequencing, DNBSEQ short-read sequencing, and Hi-C sequencing technologies. The final genome size was estimated to be 1.049 Gb, whereas 1.042 Gb of the genome was assigned to 27 pseudochromosomes. The scaffold N50 length was 75.5 Mb with a complete BUSCO score of 97.6%. We identified W and Z chromosomes and validated them by resequencing 14 additional individuals. Totally, 167.04 Mb repetitive elements were identified in the genome, accounting for 15.92% of the total genome size. We predicted 14,935 protein-coding genes, among which 14,931 genes were functionally annotated. This is the most comprehensive and complete de novo assembly of the Pavo genus, and it will serve as a valuable resource for future green peafowl ecology, evolution, and conservation studies.


Asunto(s)
Cromosomas , Genoma , Humanos , Anotación de Secuencia Molecular , Filogenia , Secuencias Repetitivas de Ácidos Nucleicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...