Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Genet ; 13: 833027, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35295951

RESUMEN

Background: Osteoporosis (OP) is a serious and common bone metabolic disease with bone mass loss and bone microarchitectural deterioration. The OSTEOWONDER capsule is clinically used to treat OP. However, the potential regulatory mechanism of the OSTEOWONDER capsule in treatment of OP remains largely unknown. Methods: The bioactive compounds of herbs and their targets were identified using the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) database. The speculative targets of OP were screened out based on GeneCards, DisGeNET, and Online Mendelian Inheritance in Man (OMIM) databases. The gene modules and hub genes of OP were identified using a weighted gene co-expression network analysis (WGCNA). Then, an herb-compound-target network was constructed based on the above analyses. The biological function of targets was subsequently investigated, and a protein-protein interaction (PPI) network was constructed to identify hub targets of OP. Finally, molecular docking was performed to explore the interaction between compounds and targets. Results: A total of 148 compounds of eight herbs and the corresponding 273 targets were identified based on the TCMSP database. A total of 4,929 targets of OP were obtained based on GeneCards, DisGeNET, and OMIM databases. In addition, six gene modules and 4,235 hub genes of OP were screened out based on WGCNA. Generally, an herb-compound-target network, including eight herbs, 84 compounds, and 58 targets, was constructed to investigate the therapeutic mechanism of the OSTEOWONDER capsule for OP. The biofunction analysis indicated 58 targets mainly associated with the bone metabolism, stimulation response, and immune response. EGFR, HIF1A, MAPK8, IL6, and PPARG were identified as the hub therapeutic targets in OP. Moreover, the interaction between EGFR, HIF1A, MAPK8, IL6, PPARG, and the corresponding compounds (quercetin and nobiletin) was analyzed using molecular docking. Conclusion: Our finding discovered the possible therapeutic mechanisms of the OSTEOWONDER capsule and supplied the potential therapeutic targets for OP.

2.
J Environ Manage ; 248: 109265, 2019 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-31352276

RESUMEN

Understanding the impact and restriction of climate change on potential distribution of bamboo forest is crucial for sustainable management of bamboo forest and bamboo-based economic development. In this study, climatic variables and maximum entropy model were used to simulate the potential distribution of bamboo forest in China under the future climate scenarios. Seven climatic variables, such as Spring precipitation, Summer precipitation, Autumn precipitation, average annual relative humidity, Autumn average temperature, average annual temperature range and annual total radiation, were selected as input variables of maximum entropy model based on the relative importance of those climate variables for predicting bamboo forest presence. The suitable ranges of the seven climatic variables for potential distribution of bamboo forest were 337-794 mm, 496-705 mm, 213-929 mm, 74.3%-83.4%, 16.6-23.8 °C, 2.3-10.1 °C and 3.2 × 104-4.3 × 104 W m-2, respectively. Under RCP4.5 and RCP8.5 climate scenarios, the suitable area of bamboo forest growth first increased and then decreased, and showed range contractions towards the interior and expansions towards southwest in China. The results of the present study can serve as a useful reference to dynamic monitoring of the spatial distribution and sustainable utilization of bamboo forest in the future under climate change.


Asunto(s)
Cambio Climático , Bosques , China , Estaciones del Año , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA