Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Rev Immunol ; 24(1): 18-32, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37402992

RESUMEN

In vitro 3D models are advanced biological tools that have been established to overcome the shortcomings of oversimplified 2D cultures and mouse models. Various in vitro 3D immuno-oncology models have been developed to mimic and recapitulate the cancer-immunity cycle, evaluate immunotherapy regimens, and explore options for optimizing current immunotherapies, including for individual patient tumours. Here, we review recent developments in this field. We focus, first, on the limitations of existing immunotherapies for solid tumours, secondly, on how in vitro 3D immuno-oncology models are established using various technologies - including scaffolds, organoids, microfluidics and 3D bioprinting - and thirdly, on the applications of these 3D models for comprehending the cancer-immunity cycle as well as for assessing and improving immunotherapies for solid tumours.


Asunto(s)
Neoplasias , Animales , Ratones , Humanos , Neoplasias/terapia , Organoides , Inmunoterapia , Modelos Animales de Enfermedad , Inmunidad
2.
Biofabrication ; 15(4)2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37402381

RESUMEN

Hepatocellular carcinoma (HCC) poses a significant threat to human health and medical care. Its dynamic microenvironment and stages of development will influence the treatment strategies in clinics. Reconstructing tumor-microvascular interactions in different stages of the microenvironment is an urgent need forin vitrotumor pathology research and drug screening. However, the absence of tumor aggregates with paracancerous microvascular and staged tumor-endothelium interactions leads to bias in the antitumor drug responses. Herein, a spheroid-on-demand manipulation strategy was developed to construct staged endothelialized HCC models for drug screening. Pre-assembled HepG2 spheroids were directly printed by alternating viscous and inertial force jetting with high cell viability and integrity. A semi-open microfluidic chip was also designed to form a microvascular connections with high density, narrow diameter, and curved morphologies. According to the single or multiple lesions in stages Ⅰ or Ⅰ HCC, endothelialized HCC models from micrometer to millimeter scale with dense tumor cell aggregation and paracancerous endothelial distribution were successively constructed. A migrating stage Ⅰ HCC model was further constructed under TGF-ßtreatment, where the spheroids exhibited a more mesenchymal phenotype with a loose cell connection and spheroid dispersion. Finally, the stage ⅠHCC model showed stronger drug resistance compared to the stage Ⅰ model, while the stage III showed a more rapid response. The corresponding work provides a widely applicable method for the reproduction of tumor-microvascular interactions at different stages and holds great promise for the study of tumor migration, tumor-stromal cell interactions, and the development of anti-tumor therapeutic strategies.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamiento farmacológico , Neoplasias Hepáticas/tratamiento farmacológico , Evaluación Preclínica de Medicamentos , Esferoides Celulares/patología , Impresión Tridimensional , Microambiente Tumoral
3.
Front Bioeng Biotechnol ; 10: 1005954, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36277380

RESUMEN

Calcium phosphate bone cement (CPC) serves as an excellent scaffold material for bone tissue engineering owing to its good biocompatibility, injectability, self-setting property and three-dimensional porous structure. However, its clinical use is limited due to the cytotoxic effect of its setting reaction on cells and difficulties in degradation into bone. In this study, bone marrow mesenchymal stem cells (BMSCs) were encapsulated in alginate chitosan alginate (ACA) microcapsules and compounded with calcium phosphate bone cement. Changes in the compressive strength, porosity, injectability and collapsibility of CPC at different volume ratios of microcapsules were evaluated. At a 40% volume ratio of microcapsules, the composite scaffold displayed high porosity and injectability with good collapsibility and compressive strength. Cell live/dead double staining, Cell Counting Kit-8 (CCK-8) assays and scanning electron microscopy were used to detect the viability, proliferation and adhesion of cells after cell microcapsules were combined with CPC. The results revealed that cells protected by microcapsules proliferated and adhered better than those that were directly combined with CPC paste, and cell microcapsules could effectively form macropores in scaffold material. The composite was subsequently implanted subcutaneously on the backs of nude mice, and ectopic osteogenesis of the scaffold was detected via haematoxylin-eosin (H&E), Masson's trichrome and Goldner's trichrome staining. CPC clearly displayed better new bone formation function and degradability after addition of pure microcapsules and cell microcapsules. Furthermore, the cell microcapsule treatment group showed greater osteogenesis than the pure microcapsule group. Collectively, these results indicate that BMSCs encapsulated in ACA microcapsules combined with CPC composite scaffolds have good application prospects as bone tissue engineering materials.

4.
Biomaterials ; 276: 121032, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34303155

RESUMEN

Human umbilical vein endothelial cells (HUVECs) and stromal cells, such as human lung fibroblasts (FBs), have been widely used to generate functional microvascular networks (µVNs) in vitro. However, primary cells derived from different donors have batch-to-batch variations and limited lifespans when cultured in vitro, which hampers the reproducibility of µVN formation. Here, we immortalize HUVECs and FBs by exogenously expressing human telomerase reverse transcriptase (hTERT) to obtain stable endothelial cell and FB sources for µVN formation in vitro. Interestingly, we find that immortalized HUVECs can only form functional µVNs with immortalized FBs from earlier passages but not from later passages. Mechanistically, we show that Thy1 expression decreases in FBs from later passages. Compared to Thy1 negative FBs, Thy1 positive FBs express higher IGFBP2, IGFBP7, and SPARC, which are important for angiogenesis and lumen formation during vasculogenesis in 3D. Moreover, Thy1 negative FBs physically block microvessel openings, reducing the perfusability of µVNs. Finally, by culturing immortalized FBs on gelatin-coated surfaces in serum-free medium, we are able to maintain the majority of Thy1 positive immortalized FBs to support perfusable µVN formation. Overall, we establish stable cell sources for µVN formation and characterize the functions of Thy1 positive and negative FBs in vasculogenesis in vitro.


Asunto(s)
Microfluídica , Telomerasa , Diferenciación Celular , Células Cultivadas , Fibroblastos/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Reproducibilidad de los Resultados
5.
J Vis Exp ; (170)2021 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-33970133

RESUMEN

Microcarriers are beads with a diameter of 60-250 µm and a large specific surface area, which are commonly used as carriers for large-scale cell cultures. Microcarrier culture technology has become one of the main techniques in cytological research and is commonly used in the field of large-scale cell expansion. Microcarriers have also been shown to play an increasingly important role in in vitro tissue engineering construction and clinical drug screening. Current methods for preparing microcarriers include microfluidic chips and inkjet printing, which often rely on complex flow channel design, an incompatible two-phase interface, and a fixed nozzle shape. These methods face the challenges of complex nozzle processing, inconvenient nozzle changes, and excessive extrusion forces when applied to multiple bioink. In this study, a 3D printing technique, called alternating viscous-inertial force jetting, was applied to enable the construction of hydrogel microcarriers with a diameter of 100-300 µm. Cells were subsequently seeded on microcarriers to form tissue engineering modules. Compared to existing methods, this method offers a free nozzle tip diameter, flexible nozzle switching, free control of printing parameters, and mild printing conditions for a wide range of bioactive materials.


Asunto(s)
Hidrogeles/química , Ingeniería de Tejidos/métodos , Impresión Tridimensional , Viscosidad
6.
Biofabrication ; 12(4): 045014, 2020 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-32599574

RESUMEN

Towards the development of in vivo-mimicking tumor model for extensive study of tumorigenesis and establishment of personalized therapy, patient-derived primary tumor cells were employed in this work for three-dimensional (3D) bioprinting. Intrahepatic cholangiocarcinoma cells isolated from patient were bioprinted using a composite hydrogel system of gelatin-alginate-MatrigelTM into pre-designed grid architecture. ICC cells were observed to process a colony forming ability with high survival rate and active proliferation. Expression levels of tumor markers, cancer stem cell markers, matrix metalloproteinase protein, index of tumor fibrosis, index of liver function, and epithelial-mesenchymal transition regulatory proteins confirmed the development of the invasive and metastatic phenotype of the intrahepatic cholangiocarcinoma cells in the 3D printed tumor microenvironment. Similar results were obtained in anti-cancer drug resistance of the intrahepatic cholangiocarcinoma cells in the 3D bioprinted construct that demonstrated stem-like properties, which suggested the promising potential of current 3D printed tumor model in the development of personalized therapy, especially for discovery of more conducive targeted drugs.


Asunto(s)
Antineoplásicos/uso terapéutico , Neoplasias de los Conductos Biliares/tratamiento farmacológico , Bioimpresión , Colangiocarcinoma/tratamiento farmacológico , Ensayos de Selección de Medicamentos Antitumorales , Modelos Biológicos , Alginatos/química , Antineoplásicos/farmacología , Neoplasias de los Conductos Biliares/patología , Biomarcadores de Tumor/metabolismo , Colangiocarcinoma/patología , Colágeno/química , Combinación de Medicamentos , Resistencia a Antineoplásicos/efectos de los fármacos , Transición Epitelial-Mesenquimal/efectos de los fármacos , Fibrosis , Gelatina/química , Humanos , Tinta , Laminina/química , Hígado/fisiopatología , Metaloproteinasas de la Matriz/metabolismo , Impresión Tridimensional , Proteoglicanos/química , Reología
7.
Biofabrication ; 12(4): 042001, 2020 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-32470967

RESUMEN

Studying biological characteristics of tumors and evaluating the treatment effects require appropriate in vitro tumor models. However, the occurrence, progression, and migration of tumors involve spatiotemporal changes, cell-microenvironment and cell-cell interactions, and signal transmission in cells, which makes the construction of in vitro tumor models extremely challenging. In the past few years, advances in biomaterials and tissue engineering methods, especially development of the bioprinting technology, have paved the way for innovative platform technologies for in vitro cancer research. Bioprinting can accurately control the distribution of cells, active molecules, and biomaterials. Furthermore, this technology recapitulates the key characteristics of the tumor microenvironment and constructs in vitro tumor models with bionic structures and physiological systems. These models can be used as robust platforms to study tumor initiation, interaction with the microenvironment, angiogenesis, motility and invasion, as well as intra- and extravasation. Bioprinted tumor models can also be used for high-throughput drug screening and validation and provide the possibility for personalized cancer treatment research. This review describes the basic characteristics of the tumor and its microenvironment and focuses on the importance and relevance of bioprinting technology in the construction of tumor models. Research progress in the bioprinting of monocellular, multicellular, and personalized tumor models is discussed, and comprehensive application of bioprinting in preclinical drug screening and innovative therapy is reviewed. Finally, we offer our perspective on the shortcomings of the existing models and explore new technologies to outline the direction of future development and application prospects of next-generation tumor models.


Asunto(s)
Bioimpresión , Neoplasias/terapia , Medicina de Precisión , Animales , Humanos , Microfluídica , Impresión Tridimensional , Microambiente Tumoral
8.
J Tissue Eng Regen Med ; 13(11): 2101-2120, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31359625

RESUMEN

Resolving the origin and development of tumor heterogeneity has proven to be a crucial challenge in cancer research. In vitro tumor models have been widely used for both scientific and clinical research. Currently, tumor models based on 2D cell culture, animal models, and 3D cell-laden constructs are widely used. Heterogeneous tumor models, which consist of more than one cell type and mimic cell-cell as well as cell-matrix interactions, are attracting increasing attention. Heterogeneous tumor models can serve as pathological models to study the microenvironment and tumor development such as tumorigenesis, invasiveness, and malignancy. They also provide disease models for drug screening and personalized therapy. In this review, the current techniques, models, and oncological applications regarding 3D heterogeneous tumor models are summarized and discussed.


Asunto(s)
Carcinogénesis , Modelos Biológicos , Neoplasias Experimentales , Microambiente Tumoral , Animales , Carcinogénesis/metabolismo , Carcinogénesis/patología , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Invasividad Neoplásica , Neoplasias Experimentales/tratamiento farmacológico , Neoplasias Experimentales/metabolismo , Neoplasias Experimentales/patología
9.
Acta Biomater ; 95: 245-257, 2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31128321

RESUMEN

A new three-dimensional (3D) cell printing system was developed and investigated to organize multiple cells/biomaterials with a control precision within 100 µm. This system can be used for the in vitro construction of heterogeneous tissue models. The proposed printing system was achieved by the integration of extrusion printing and alternating viscous and inertial force jetting (AVIFJ) techniques using dual-nozzle switching. In this technique, hydrogels containing high cell densities were extruded using extrusion printing, while droplets containing single cells were precisely manipulated using AVIFJ. The droplets that contained single cells were at the scale of pico-liters and could be accurately positioned at the micron scale. Stable hydrogel structures with adjustable diameters were also printed, with cell viabilities exceeding 90% after printing. A heterogeneous tumor model that contained spheroids and human umbilical vein endothelial cells (HUVECs) was then constructed using the established integrated cell printing system in a stepwise or simultaneous fashion. HUVEC-loaded droplets were observed to locate around the preformed tumor spheroids as designed. Cells and spheroids in the model maintained high cell viability and sustained growth throughout the culture period. The ELISA results of albumin production also proved that the spheroids maintained increased cellular function during the culture. These results demonstrated the feasibility of this integrated 3D printing system for the engineering of in vitro heterogeneous tissue models for future biological and pathological studies. STATEMENT OF SIGNIFICANCE: Addressing the challenge of multi-scale printing in the construction of heterogeneous tissue models, a new 3D cell printing system was developed to organize cells/biomaterials of a control precision within 100 µm. AVIFJ was integrated with extrusion printing, thereby achieving the construction of cell interactions between single cells and spheroids, the manipulation of single cells in a 3D microenvironment with high accuracy, and the real-time on-demand printing. The printed heterogeneous tumor model maintained cell viability, sustained cell growth, and increased cell function during 7 days of culture. We believed that this work would benefit the production of functional artificial tissues, enabling the construction of more biomimetic cell arrangements and microenvironment to support cell functions.


Asunto(s)
Impresión Tridimensional , Ingeniería de Tejidos , Células HeLa , Células Hep G2 , Células Endoteliales de la Vena Umbilical Humana , Humanos , Hidrogeles/farmacología , Esferoides Celulares/citología , Esferoides Celulares/efectos de los fármacos , Viscosidad
10.
IEEE Trans Biomed Eng ; 66(9): 2512-2520, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-30624208

RESUMEN

GOAL: The construction of single-cell array is known as the challenging technology to manipulate cell position and number and accomplish cell analysis in biomedical engineering. METHODS: We put forward a novel controllable cell printing technique for rapid, precise, convenient, high cell viability, multicellular, and high-throughput printing. We also proposed a novel microfluidic device to verify the effectiveness of the printing and study the migration ability and anti-cancer drug responses of cancer cell as important applications. RESULTS: This technique offered a minimum process time of 5 min, a maximum positional accuracy of 10 µm, 0.1 nL liquid volume level per droplet, above 87% cell viability after seven days and the ability to print different multicellular arrays. We found that the cell compared to cell culture in petri dish after 48 h. In addition, there was a significant different inhibition on cancer cells migration ability and cell drug activities with different concentrations of paclitaxel. CONCLUSION: This novel controllable cell array printing technique on the microfluidic platforms provides a useful method with high-quality printing and cell viability for the applications of single-cell analysis and high-throughput drug screening. SIGNIFICANCE: The controllable cell printing technique could apply in many biological processes and biomedical engineering applications, such as cell analysis, cancer development, and drug screening and metabolism. Combined with the microfluidic chips, tissue engineering, and sensors, this technique will be widely used for the construction and analysis of biological and biomedical model.


Asunto(s)
Bioimpresión/métodos , Técnicas Analíticas Microfluídicas/instrumentación , Análisis de la Célula Individual/instrumentación , Línea Celular Tumoral , Supervivencia Celular , Evaluación Preclínica de Medicamentos/instrumentación , Diseño de Equipo , Ensayos Analíticos de Alto Rendimiento/instrumentación , Humanos , Análisis de Matrices Tisulares/instrumentación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...