Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 45
1.
Appl Microbiol Biotechnol ; 108(1): 336, 2024 May 18.
Article En | MEDLINE | ID: mdl-38761182

To investigate the cell-cell interactions of intergeneric bacterial species, the study detected the survival of Enterococcus faecalis (Ef) under monospecies or coaggregation state with Fusobacterium nucleatum subsp. polymorphum (Fnp) in environmental stress. Ef and Fnp infected the human macrophages with different forms (Ef and Fnp monospecies, Ef-Fnp coaggregates, Ef + Fnp cocultures) for exploring the immunoregulatory effects and the relevant molecular mechanisms. Meanwhile, the transcriptomic profiles of coaggregated Ef and Fnp were analyzed. Ef was shown to coaggregate with Fnp strongly in CAB within 90 min by forming multiplexes clumps. Coaggregation with Fnp reinforced Ef resistance against unfavorable conditions including alkaline, hypertonic, nutrient-starvation, and antibiotic challenges. Compared with monospecies and coculture species, the coaggregation of Ef and Fnp significantly facilitates both species to invade dTHP-1 cells and aid Ef to survive within the cells. Compared with coculture species, dual-species interaction of Ef and Fnp significantly decreased the levels of pro-inflammatory cytokines IL-6, TNF-α, and chemokines MCP-1 secreted by dTHP-1 cells and lessened the phosphorylation of p38, JNK, and p65 signaling pathways. The transcriptome sequencing results showed that 111 genes were differentially expressed or Ef-Fnp coaggregated species compared to Ef monospecies; 651 genes were differentially expressed for Fnp when coaggregation with Ef. The analysis of KEGG pathway showed that Ef differentially expressed genes (DEGs) were enriched in quorum sensing and arginine biosynthesis pathway; Fnp DEGs were differentially concentrated in lipopolysaccharide (LPS) biosynthesis, biofilm formation, and lysine degradation pathway compared to monospecies. KEY POINTS: • Coaggregated with Fnp aids Ef's survival in environmental stress, especially in root canals after endodontic treatment. • The coaggregation of Ef and Fnp may weaken the pro-inflammatory response and facilitate Ef to evade killed by macrophages. • The coaggregation between Ef and Fnp altered interspecies transcriptional profiles.


Enterococcus faecalis , Fusobacterium nucleatum , Macrophages , Stress, Physiological , Fusobacterium nucleatum/physiology , Fusobacterium nucleatum/genetics , Enterococcus faecalis/genetics , Enterococcus faecalis/physiology , Humans , Macrophages/microbiology , Macrophages/immunology , Cytokines/metabolism , Cytokines/genetics , Bacterial Adhesion , Coculture Techniques , Gene Expression Profiling , Transcriptome , Cell Line , Interleukin-6/genetics , Interleukin-6/metabolism , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/genetics , Inflammation
2.
Free Radic Biol Med ; 220: 236-248, 2024 Aug 01.
Article En | MEDLINE | ID: mdl-38704052

Alcoholic liver disease (ALD) is a common chronic redox disease caused by increased alcohol consumption. Abstinence is a major challenge for people with alcohol dependence, and approved drugs have limited efficacy. Therefore, this study aimed to explore a new treatment strategy for ALD using ferroferric oxide endohedral fullerenol (Fe3O4@C60(OH)n) in combination with static magnetic and electric fields (sBE). The primary hepatocytes of 8-9-week-old female BALB/c mice were used to evaluate the efficacy of the proposed combination treatment. A mouse chronic binge ethanol feeding model was established to determine the alleviatory effect of Fe3O4@C60(OH)n on liver injury under sBE exposure. Furthermore, the ability of Fe3O4@C60(OH)n to eliminate •OH was evaluated. Alcohol-induced hepatocyte and mitochondrial damage were reversed in vitro. Additionally, the combination therapy reduced liver damage, alleviated oxidative stress by improving antioxidant levels, and effectively inhibited liver lipid accumulation in animal experiments. Here, we used a combination of magnetic derivatives of fullerenol and sBE to further improve the ROS clearance rate, thereby alleviating ALD. The developed combination treatment may effectively improve alcohol-induced liver damage and maintain redox balance without apparent toxicity, thereby enhancing therapy aimed at ALD and other redox diseases.


Fullerenes , Hepatocytes , Liver Diseases, Alcoholic , Mice, Inbred BALB C , Oxidative Stress , Reactive Oxygen Species , Animals , Fullerenes/pharmacology , Fullerenes/chemistry , Fullerenes/therapeutic use , Mice , Reactive Oxygen Species/metabolism , Female , Hepatocytes/metabolism , Hepatocytes/drug effects , Hepatocytes/pathology , Oxidative Stress/drug effects , Liver Diseases, Alcoholic/metabolism , Liver Diseases, Alcoholic/pathology , Liver Diseases, Alcoholic/drug therapy , Liver/metabolism , Liver/pathology , Liver/drug effects , Antioxidants/pharmacology , Disease Models, Animal , Humans , Oxidation-Reduction/drug effects , Ethanol/toxicity
3.
ACS Appl Mater Interfaces ; 16(5): 5486-5503, 2024 Feb 07.
Article En | MEDLINE | ID: mdl-38284176

Cranial bone defects remain a major clinical challenge, increasing patients' life burdens. Tricarboxylic acid (TCA) cycle metabolites play crucial roles in facilitating bone tissue regeneration. However, the development of TCA cycle metabolite-modified biomimetic grafts for skull bone regeneration still needs to be improved. The mechanism underlying the release of TCA cycle metabolites from biomaterials in regulating immune responses and mesenchymal stem cell (MSC) fate (migration and differentiation) remains unknown. Herein, this work constructs biomimetic hydrogels composed of gelatin and chitosan networks covalently cross-linked by genipin (CGG hydrogels). A series of TCA cycle metabolite-coordinated CGG hydrogels with strong mechanical and antiswelling performances are subsequently developed. Remarkably, the citrate (Na3Cit, Cit)-coordinated CGG hydrogels (CGG-Cit hydrogels) with the highest mechanical modulus and strength significantly promote skull bone regeneration in rat and murine cranial defects. Mechanistically, using a transgenic mouse model, bulk RNA sequencing, and single-cell RNA sequencing, this work demonstrates that CGG-Cit hydrogels promote Gli1+ MSC migration via neutrophil-secreted oncostatin M. Results also indicate that citrate improves osteogenesis via enhanced histone H3K9 acetylation on osteogenic master genes. Taken together, the immune microenvironment- and MSC fate-regulated CGG-Cit hydrogels represent a highly efficient and facile approach toward skull bone tissue regeneration with great potential for bench-to-bedside translation.


Mesenchymal Stem Cells , Osteogenesis , Humans , Rats , Mice , Animals , Histones , Citric Acid Cycle , Acetylation , Neutrophils/metabolism , Bone Regeneration , Skull/metabolism , Cell Differentiation , Hydrogels/pharmacology , Hydrogels/metabolism , Citrates
4.
Transl Cancer Res ; 12(10): 2613-2628, 2023 Oct 31.
Article En | MEDLINE | ID: mdl-37969376

Background: Lung cancer is the leading cause of cancer-associated mortality. Lung adenocarcinoma (LUAD) amounts to more than 40% of all lung malignancies. Therefore, developing clinically useful biomarkers for this disease is critical. DNA damage repair (DDR) is a complicated signal transduction process that ensures genomic stability. DDR should be comprehensively analyzed to elucidate their clinical significance and tumor immune microenvironment interactions. Methods: In this study, DDR-related genes (DRGs) were selected to investigate their prognostic impact on LUAD. A regression-based prognostic model was established based on The Cancer Genome Atlas (TCGA)-LUAD cohort and three external Gene Expression Omnibus (GEO) validation cohorts (GSE31210, GSE68465, and GSE72094). The robust, established model could independently predict the clinical outcomes in patients. Then, the prognostic performance of risk profiles was assessed using a time-dependent receiver operating characteristic (ROC) curve, Cox regression, nomogram, and Kaplan-Meier analyses. Furthermore, the potential biological functions and infiltration status of DRGs in LUAD were investigated with ESTIMATE and CIBERSORT. Finally, the effects of HCLS1 on the clinical features, prognosis, biological function, immune infiltration, and treatment response in LUAD were systematically analyzed. Results: Eleven DRGs were constructed to categorize patients into high- and low-risk groups. The risk score was an independent predictor of overall survival (OS). HCLS1 expression was downregulated in LUAD samples and linked with clinicopathological features. Multivariate Cox regression analysis using the Kaplan-Meier plotter revealed that low HCLS1 expression was independently associated with poor OS. Moreover, the HCLS1 high-expression group had higher immune-related gene expression and ESTIMATE scores. It was positively correlated with the infiltration of M1 macrophages, activated memory CD4 T cells, CD8 T cells, memory B cells, resting dendritic cells, and memory CD4 T cells, Tregs, and neutrophils. Conclusions: A new classification system was developed for LUAD according to DDR characteristics. This stratification has important clinical values, reliable prognosis, and immunotherapy in patients with LUAD. Moreover, HCLS1 is a potential prognostic biomarker of LUAD that correlates with the extent of immune cell infiltration in the tumor microenvironment (TME).

5.
Medicine (Baltimore) ; 102(44): e35481, 2023 Nov 03.
Article En | MEDLINE | ID: mdl-37932988

Lung adenocarcinoma (LUAD) is a non-small-cell lung cancer and is the leading cause of cancer-related deaths worldwide. Immunotherapy is a promising candidate for LUAD, and tumor mutation burden (TMB) could be a new biomarker to monitor the response of cancer patients to immunotherapy. It is known that the mucin 16 (MUC16) mutation is the most common and affects the progression and prognosis of several cancers. However, whether MUC16 mutations are associated with TMB and tumor-infiltrating immune cells in LUAD is not fully elucidated. All the data were obtained from the cancer genome atlas database to assess the prognostic value and potential mechanism of MUC16 in LUAD. An immune prognostic model (IPM) was developed based on immune-related genes that could be differentially expressed between MUC16MUT and MUC16WT LUAD patients. Later, the IPM effect on the prognosis and immunotherapy of LUAD was comprehensively evaluated. MUC16 was frequently mutated in LUAD, with a mutational frequency of 43.4%, significantly associated with higher TMB and better clinical prognosis. Based on 436 patients with LUAD, an IPM was established and validated to differentiate patients with a low or high risk of poor survival. The univariate and multivariate Cox regression analyses demonstrated that the IPM was an independent prognostic indicator for LUAD patients. Elevated expressions of PD-L1, LAG3, PDCD1, and SIGLEC15, and most of the T-effector and interferon-γ gene signatures, were depicted in the high-risk group. Moreover, the nomogram using the IPM and clinical prognostic factors also predicted the overall survival and clinical utility. Our project developed a robust risk signature depending on the MUC16 status and provided novel insights for individualized treatment options for LUAD patients.


Adenocarcinoma of Lung , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , CA-125 Antigen , Mutation , Immunotherapy , Prognosis , Membrane Proteins
6.
Biochem Genet ; 2023 Sep 01.
Article En | MEDLINE | ID: mdl-37658254

Metabolites are important indicators of cancer and mutations in genes involved in amino acid metabolism may influence tumorigenesis. Immunotherapy is an effective cancer treatment option; however, its relationship with amino acid metabolism has not been reported. In this study, RNA-seq data for 371 liver cancer patients were acquired from TCGA and used as the training set. Data for 231 liver cancer patients were obtained from ICGC and used as the validation set to establish a gene signature for predicting liver cancer overall survival outcomes and immunotherapeutic responses. Four reliable groups based on 132 amino acid metabolism-related DEGs were obtained by consistent clustering of 371 HCC patients and a four-gene signature for prediction of liver cancer survival outcomes was developed. Our data show that in different clinical groups, the overall survival outcomes in the high-risk group were markedly low relative to the low-risk group. Univariate and multivariate analyses revealed that the characteristics of the 4-gene signature were independent prognostic factors for liver cancer. The ROC curve revealed that the risk characteristic is an efficient predictor for 1-, 2-, and 3-year HCC survival outcomes. The GSVA and KEGG pathway analyses revealed that high-risk score tumors were associated with all aspects of the degree of malignancy in liver cancer. There were more mutant genes and greater immune infiltrations in the high-risk groups. Assessment of the three immunotherapeutic cohorts established that low-risk score patients significantly benefited from immunotherapy. Then, we established a prognostic nomogram based on the TCGA cohort. In conclusion, the 4-gene signature is a reliable diagnostic marker and predictor for immunotherapeutic efficacy.

7.
Cell Biosci ; 13(1): 175, 2023 Sep 22.
Article En | MEDLINE | ID: mdl-37740216

BACKGROUND: Menin is a scaffold protein encoded by the Men1 gene, which interacts with various transcriptional proteins to activate or repress cellular processes and is a key mediator in multiple organs. Both liver-specific and hepatocyte-specific Menin deficiency promotes high-fat diet-induced liver steatosis in mice, as well as insulin resistance and type 2 diabetic phenotype. The potential link between Menin and hepatic metabolism homeostasis may provide new insights into the mechanism of fatty liver disease. RESULTS: Disturbance of hepatic Menin expression impacts metabolic pathways associated with non-alcoholic fatty liver disease (NAFLD), including the FoxO signaling pathway, which is similar to that observed in both oleic acid-induced fatty hepatocytes model and biopsied fatty liver tissues, but with elevated hepatic Menin expression and inhibited FABP1. Higher levels of Menin facilitate glucose uptake while restraining fatty acid uptake. Menin targets the expression of FABP3/4/5 and also CD36 or GK, PCK by binding to their promoter regions, while recruiting and deploying the cellular localization of PPARγ and SIRT1 in the nucleus and cytoplasm. Accordingly, Menin binds to PPARγ and/or FoxO1 in hepatocytes, and orchestrates hepatic glucose and fatty acid uptake by recruiting SIRT1. CONCLUSION: Menin plays an orchestration role as a transcriptional activator and/or repressor to target downstream gene expression levels involved in hepatic energy uptake by interacting with the cellular energy sensor SIRT1, PPARγ, and/or FoxO1 and deploying their translocations between the cytoplasm and nucleus, thereby maintaining metabolic homeostasis. These findings provide more evidence suggesting Menin could be targeted for the treatment of hepatic steatosis, NAFLD or metabolic dysfunction-associated fatty liver disease (MAFLD), and even other hepatic diseases.

8.
Cell Mol Life Sci ; 80(8): 218, 2023 Jul 20.
Article En | MEDLINE | ID: mdl-37470863

BACKGROUND: Abundantly expressed factors in the oocyte cytoplasm can remarkably reprogram terminally differentiated germ cells or somatic cells into totipotent state within a short time. However, the mechanism of the different factors underlying the reprogramming process remains uncertain. METHODS: On the basis of Yamanaka factors OSKM induction method, MEF cells were induced and reprogrammed into iPSCs under conditions of the oocyte-derived factor Wdr82 overexpression and/or knockdown, so as to assess the reprogramming efficiency. Meanwhile, the cellular metabolism was monitored and evaluated during the reprogramming process. The plurpotency of the generated iPSCs was confirmed via pluripotent gene expression detection, embryoid body differentiation and chimeric mouse experiment. RESULTS: Here, we show that the oocyte-derived factor Wdr82 promotes the efficiency of MEF reprogramming into iPSCs to a greater degree than the Yamanaka factors OSKM. The Wdr82-expressing iPSC line showed pluripotency to differentiate and transmit genetic material to chimeric offsprings. In contrast, the knocking down of Wdr82 can significantly reduce the efficiency of somatic cell reprogramming. We further demonstrate that the significant suppression of oxidative phosphorylation in mitochondria underlies the molecular mechanism by which Wdr82 promotes the efficiency of somatic cell reprogramming. Our study suggests a link between mitochondrial energy metabolism remodeling and cell fate transition or stem cell function maintenance, which might shed light on the embryonic development and stem cell biology.


Chromosomal Proteins, Non-Histone , Induced Pluripotent Stem Cells , Animals , Mice , Cell Differentiation/genetics , Cellular Reprogramming/genetics , Glycolysis/genetics , Mitochondria/metabolism , Oxidative Phosphorylation , WD40 Repeats , Chromosomal Proteins, Non-Histone/genetics
9.
Sci Rep ; 13(1): 693, 2023 01 13.
Article En | MEDLINE | ID: mdl-36639421

Non-small cell lung cancer (NSCLC), which accounts for approximately 85% of all lung cancer cases, is associated with a poor outcome. Rafoxanide is an anthelmintic drug that inhibits tumor growth in certain malignancies. However, its impact on NSCLC remains unknown. In this study, we examined the effect of rafoxanide on NSCLC and dissected the underlying mechanism. The results showed that rafoxanide significantly inhibited the growth, invasion, and migration of NSCLC cells. Besides, rafoxanide can induce NSCLC cell apoptosis and cell cycle arrest in a dose-dependent manner. RNA-seq analysis revealed that genes associated with endoplasmic reticulum stress (ER) stress responses were activated. Mechanistically, we found Rafoxanide can induce ER stress and activate the unfolded protein response (UPR). Apoptosis was activated by excessive ER stress, and autophagy was activated to partially alleviate ER stress. In vivo, we found that rafoxanide inhibited the growth of A549 and H1299 xenograft mouse models without severe side effects. Collectively, the present study indicates that rafoxanide may be a candidate drug for the treatment of NSCLC.


Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Animals , Mice , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/pathology , Rafoxanide/pharmacology , Rafoxanide/therapeutic use , Lung Neoplasms/drug therapy , Cell Proliferation , Endoplasmic Reticulum Stress , Apoptosis , Cell Line, Tumor
10.
Front Oncol ; 12: 947054, 2022.
Article En | MEDLINE | ID: mdl-36505822

Background: DExD-box helicase 21 (DDX21) is an essential member of the RNA helicase family. DDX21 is involved in the carcinogenesis of various malignancies, but there has been no comprehensive research on its involvement in different types of cancer. Method: This study used TCGA, CPTAC, GTEx, GEO, FANTOM5, BioGRID, TIMER2, GEPIA2, cBioPortal, STRING, and Metascape databases and Survival ROC software to evaluate DDX21 gene expression, protein expression, immunohistochemistry, gene mutation, immune infiltration, and protein phosphorylation in 33 TCGA tumor types, as well as the prognostic relationship between DDX21 and different tumors, by survival analysis and similar gene enrichment analysis. Furthermore, Cell Counting Kit-8 (CCK-8) and Transwell studies were employed to assess the effect of DDX21 expression on lung adenocarcinoma (LUAD) cell proliferation and migration. Result: The DDX21 gene was highly expressed in most cancers, and overexpression was associated with poor overall survival (OS) and disease-free survival (DFS). DDX21 mutations were most common in uterine corpus endometrial carcinoma (UCEC; >5%), and DDX21 expression was positively correlated with the degree of infiltration of CAF and CD8+ cells in several tumor types. Numerous genes were co-expressed with DDX21. Gene enrichment analysis revealed close links between DDX21, RNA metabolism, and ribosomal protein production. In vitro analysis of LUAD cells showed that DDX21 expression was positively correlated with cell proliferation and migration capacity, consistent with prior bioinformatics studies. Conclusions: DDX21 is overexpressed in a variety of cancers, and overexpression in some cancers is associated with poor prognosis. Immune infiltration and DDX21-related gene enrichment analyses indicated that DDX21 may affect cancer development through mechanisms that regulate tumor immunity, RNA metabolism, and ribosomal protein synthesis. This pan-cancer study revealed the prognostic value and the oncogenic role of DDX21.

11.
Front Microbiol ; 13: 1012124, 2022.
Article En | MEDLINE | ID: mdl-36338034

Coxsackievirus B3 (CVB3) was one of the most common pathogens to cause viral myocarditis. Circular RNAs as novel non-coding RNAs with a closed loop molecular structure have been confirmed to be involved in virus infectious diseases, but the function in CVB3 infection was not systematically studied. In this study, we identified that hsa_circ_0063331 (circDDX17) was drastically decreased after CVB3 infection by circRNA microarray. In vivo and in vitro, when cells or mice were infected with CVB3, the expression of circDDX17 was significantly reduced, as demonstrated by quantitative real-time PCR assays. Additionally, circDDX17 enhanced CVB3 replication by downregulating the expression of miR-1248 in HeLa and HL-1 cells, and miR-1248 regulated CVB3 replication through interacting with the gene coding for NOTCH Receptor 2 (NOTCH2), and NOTCH2 could upregulate methyltransferase-like protein 3 (METTL3). Taken together, this study suggested that circDDX17 promoted CVB3 replication and regulated NOTCH2 by targeting miR-1248 as a miRNAs sponge.

12.
RSC Adv ; 12(42): 27309-27320, 2022 Sep 22.
Article En | MEDLINE | ID: mdl-36276006

In this paper, a series of tungsten-zirconium mixed binary oxides (denoted as W m ZrO x ) were synthesized via co-precipitation as supports to prepare Ce0.4/W m ZrO x catalysts through an impregnation method. The promoting effect of W doping in ZrO2 on selective catalytic reduction (SCR) performance of Ce0.4/ZrO2 catalysts was investigated. The results demonstrated that addition of W in ZrO2 could remarkably enhance the catalytic performance of Ce0.4/ZrO2 catalysts in a broad temperature range. Especially when the W/Zr molar ratio was 0.1, the Ce0.4/W0.1ZrO x catalyst exhibited the widest active temperature window of 226-446 °C (NO x conversion rate > 80%) and its N2 selectivity was almost 100% in the temperature of 150-450 °C. Moreover, the Ce0.4/W0.1ZrO x catalyst also exhibited good SO2 tolerance, which could maintain more than 94% of NO x conversion efficiency after being exposed to a 100 ppm SO2 atmosphere for 18 h. Various characterization results manifested that a proper amount of W doping in ZrO2 was not only beneficial to enlarge the specific surface area of the catalyst, but also inhibited the growth of fluorite structure CeO2, which were in favor of CeO2 dispersion on the support. The presence of W was conducive to the growth of a stable tetragonal phase crystal of ZrO2 support, and a part of W and Zr combined to form W-Zr-O x solid super acid. Both of them resulted in abundant Lewis acid sites and Brønsted acid sites, enhancing the total surface acidity, thus significantly improving NH3 species adsorption on the surface of the Ce0.4/W0.1ZrO x catalyst. Furthermore, the promoting effect of adding W on SCR performance was also related to the improved redox capability, higher Ce3+/(Ce3+ + Ce4+) ratio and abundant surface chemisorbed oxygen species. The in situ DRIFTS results indicated that nitrate species adsorbed on the surface of the Ce0.4/W0.1ZrO x catalyst could react with NH3 due to the activation of W. Therefore, the reaction pathway over the Ce0.4/W0.1ZrO x catalyst followed both Eley-Rideal (E-R) and Langmuir-Hinshelwood (L-H) mechanisms at 250 °C.

13.
J Periodontal Implant Sci ; 52(4): 282-297, 2022 Aug.
Article En | MEDLINE | ID: mdl-36047582

PURPOSE: To explore differences in the subgingival microbiome according to the presence of periodontitis and/or type 2 diabetes mellitus (T2D), a metagenomic sequencing analysis of the subgingival microbiome was performed. METHODS: Twelve participants were divided into 4 groups based on their health conditions (periodontitis, T2D, T2D complicated with periodontitis, and generally healthy). Subgingival plaque was collected for metagenomic sequencing, and gingival crevicular fluids were collected to analyze the concentrations of short-chain fatty acids. RESULTS: The shifts in the subgingival flora from the healthy to periodontitis states were less prominent in T2D subjects than in subjects without T2D. The pentose and glucuronate interconversion, fructose and mannose metabolism, and galactose metabolism pathways were enriched in the periodontitis state, while the phosphotransferase system, lipopolysaccharide (LPS) and peptidoglycan biosynthesis, bacterial secretion system, sulfur metabolism, and glycolysis pathways were enriched in the T2D state. Multiple genes whose expression was upregulated from the red and orange complex bacterial genomes were associated with bacterial biofilm formation and pathogenicity. The concentrations of propionic acid and butyric acid were significantly higher in subjects with periodontitis, with or without T2D, than in healthy subjects. CONCLUSIONS: T2D patients are more susceptible to the presence of periodontal pathogens and have a higher risk of developing periodontitis. The pentose and glucuronate interconversion, fructose and mannose metabolism, galactose metabolism, and glycolysis pathways may represent the potential microbial functional association between periodontitis and T2D, and butyric acid may play an important role in the interaction between these 2 diseases. The enrichment of the LPS and peptidoglycan biosynthesis, bacterial secretion system, and sulfur metabolism pathways may cause T2D patients to be more susceptible to periodontitis.

14.
Cells ; 11(18)2022 09 15.
Article En | MEDLINE | ID: mdl-36139459

Fatty liver disease, a type of metabolic disorder, frequently occurs in dairy cows during the parturition period, causing a high culling rate and, therefore, considerable economic losses in the dairy industry owing to the lack of effective diagnostic methods. Here, metabolite biomarkers were identified and validated for the diagnosis of metabolic disorders. A total of 58 participant cows, including severe fatty liver disease and normal control groups, in the discovery set (liver biopsy tested, n = 18), test set (suspected, n = 20) and verification set (liver biopsy tested, n = 20), were strictly recruited and a sample collected for their feces, urine, and serum. Non-targeted GC-MS-based metabolomics methods were used to characterize the metabolite profiles and to screen in the discovery set. Eventually, ten novel biomarkers involved in bile acid, amino acid, and fatty acid were identified and validated in the test set. Each of them had a higher diagnostic ability than the traditional serum biochemical indicators, with an average area under the receiver operating characteristic curve of 0.830 ± 0.0439 (n = 10) versus 0.377 ± 0.182 (n = 9). Especially, combined biomarker panels via different metabolic pipelines had much better diagnostic sensitivity and specificity than every single biomarker, suggesting their powerful utilization potentiality for the early detection of fatty liver disease. Intriguingly, the serum biomarkers were confirmed perfectly in the verification set. Moreover, common biological pathways were found to be underlying the pathogenesis of fatty liver syndrome in cattle via different metabolic pipelines. These newly-discovered and non-invasive metabolic biomarkers are meaningful in reducing the high culling rate of cows and, therefore, benefit the sustainable development of the dairy industry.


Fatty Liver , Metabolomics , Amino Acids , Animals , Biomarkers/metabolism , Cattle , Fatty Acids , Female , Humans , Metabolomics/methods
15.
Viral Immunol ; 35(5): 381-385, 2022 06.
Article En | MEDLINE | ID: mdl-35605096

Coxsackievirus B3 (CVB3) is one of the major viruses associated with human viral myocarditis, in members of the Picornaviridae order. Cellular localization depends on the activity of nuclear pore complexes, which are composed of nucleoporins (Nups), including Nup62. To better understand interactions between Nup62 and CVB3, we investigated the impact of CVB3 infection on Nup62 levels and the impact of Nup62 production on CVB3 replication in cultured cells. We found that CVB3 infection correlated with decreased Nup62 expression in vitro and that lower levels of Nup62 led to inhibition of CVB3 replication and to decreased activation of AKT and extracellular signal-related kinase. Our study reveals that Nup62 regulates the CVB3 replication during infection.


Coxsackievirus Infections , Myocarditis , Enterovirus B, Human/physiology , HeLa Cells , Humans , Nuclear Pore/metabolism , Virus Replication
16.
Front Cell Infect Microbiol ; 12: 879423, 2022.
Article En | MEDLINE | ID: mdl-35573793

In subgingival plaque biofilms, Fusobacterium nucleatum is closely related to the occurrence and development of periodontitis. Streptococcus gordonii, as an accessory pathogen, can coaggregate with periodontal pathogens, facilitating the subgingival colonization of periodontal pathogens. Studies have shown that F. nucleatum can coaggregate with S. gordonii and colonize the subgingival plaque. However, most studies have focused on monocultures or coinfection of species and the potential impact of coaggregation between the two species on periodontal interactions to human gingival epithelial cells (hGECs) remains poorly understood. The present study explored the effect of coaggregation between F. nucleatum and S. gordonii on subgingival synergistic virulence to hGECs. The results showed that coaggregation inhibited the adhesion and invasion of F. nucleatum to hGECs compared with that in the F. nucleatum monoculture and coinfection group. Coaggregation and coinfection with F. nucleatum both enhanced S. gordonii adhesion to hGECs, but neither of the two groups affected S. gordonii invasion to hGECs compared with S. gordonii monoculture. The gene expression levels of TLR2 and TLR4 in hGECs in the coaggregation group were higher than those in the monoculture groups but lower than those in the coinfection group. Compared with coinfection, the coaggregation inhibited apoptosis of hGECs and promoted the secretion of the proinflammatory cytokines TNF-α and IL-6 by hGECs, showed a synergistic inflammatory effect, while coaggregation inhibited the secretion of the anti-inflammatory cytokine TGF-ß1. Coaggregation enhanced the phosphorylation of p65, p38, and JNK proteins and therefore activated the NF-κB and MAPK signaling pathways. Pretreatment with a pathway antagonist/inhibitor decreased the phosphorylation levels of proteins and the secretion of TNF-α and IL-6. In conclusion, coaggregation inhibited the adhesion and invasion of F. nucleatum to hGECs. However, it enhanced the adhesion of S. gordonii to hGECs. Compared with coinfection, coaggregation inhibited the apoptosis of hGECs. The coaggregation coordinately promoted the secretion of TNF-α and IL-6 by hGECs through the TLR/NF-κB and TLR/MAPK signaling pathways while inhibiting the secretion of TGF-ß1, thus aggravating the inflammatory response of hGECs.


Coinfection , Fusobacterium nucleatum , Bacterial Adhesion , Epithelial Cells/microbiology , Humans , Interleukin-6 , NF-kappa B , Streptococcus gordonii/genetics , Transforming Growth Factor beta1 , Tumor Necrosis Factor-alpha/pharmacology , Virulence
17.
Mol Cell Biochem ; 477(5): 1555-1568, 2022 May.
Article En | MEDLINE | ID: mdl-35182330

Non-alcoholic fatty liver disease (NAFLD) is rapidly being recognized as the leading cause of chronic liver disease worldwide. Men1, encoding protein of menin, is a key causative gene of multiple endocrine neoplasia type 1 syndrome including pancreatic tumor. It is known that insulin that secretes by endocrine tissue pancreatic islets plays a critical role in hepatic metabolism. Mouse model of hemizygous deletion of Men1 was shown to have severe hepatic metabolism disorders. However, the molecular function of menin on lipid deposition in hepatocytes needs to be further studied. Transcriptome sequencing does show that expression suppression of Men1 in mouse hepatocytes widely affect signaling pathways involved in hepatic metabolism, such as fatty acid metabolism, insulin response, glucose metabolism and inflammation. Further molecular studies indicates that menin overexpression inhibits expressions of the fat synthesis genes Srebp-1c, Fas, and Acc1, the fat differentiation genes Pparγ1 and Pparγ2, and the fat transport gene Cd36, thereby inhibiting the fat accumulation in hepatocytes. The biological process of menin regulating hepatic lipid metabolism was accomplished by interacting with the transcription factor FoxO1, which is also found to be critical for lipid metabolism. Moreover, menin responds to insulin in hepatocytes and mediates its regulatory effect on hepatic metabolism. Our findings suggest that menin is a crucial mediation factor in regulating the hepatic fat deposition, suggesting it could be a potential important therapeutic target for NAFLD.


Non-alcoholic Fatty Liver Disease , Animals , CD36 Antigens/metabolism , Forkhead Box Protein O1/genetics , Forkhead Box Protein O1/metabolism , Hepatocytes/metabolism , Insulin/metabolism , Lipid Metabolism/genetics , Lipids , Liver/metabolism , Mice , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/metabolism , Proto-Oncogene Proteins , Sterol Regulatory Element Binding Protein 1/genetics
18.
Int Endod J ; 55(1): 139-140, 2022 01.
Article En | MEDLINE | ID: mdl-34882811
19.
Virol Sin ; 36(6): 1585-1599, 2021 Dec.
Article En | MEDLINE | ID: mdl-34632544

Viral myocarditis (VM) is an inflammatory disease of the myocardium associated with heart failure, which is caused by common viral infections. A majority of the infections are initiated by coxsackievirus B3 (CVB3). MicroRNAs (miRNAs) have a major role in various biological processes, including gene expression, cell growth, proliferation, and apoptosis, as well as viral infection and antiviral immune responses. Although, miRNAs have been found to regulate viral infections, their role in CVB3 infection remains poorly understood. In the previous study, miRNA microarray results showed that miR-324-3p expression levels were significantly increased when cells and mice were infected with CVB3. It was also found that miR-324-3p downregulated TRIM27 and decreased CVB3 replication in vitro and in vivo. In vitro, analysis of downstream signaling of TRIM27 revealed that, miR-324-3p inhibited CVB3 infection, and reduced cytopathic effect and viral plaque formation by reducing the expression of TRIM27. In vivo, miR-324-3p decreased the expression of TRIM27, reduced cardiac viral replication and load, thereby strongly attenuating cardiac injury and inflammation. Taken together, this study suggests that miR-324-3p targets TRIM27 to inhibit CVB3 replication and viral load, thereby reducing the cardiac injury associated with VM.


Coxsackievirus Infections , MicroRNAs , Myocarditis , Animals , Apoptosis , Mice , Mice, Inbred BALB C , MicroRNAs/genetics , Myocarditis/genetics , Myocarditis/virology , Virus Replication
20.
BMC Genomics ; 22(1): 640, 2021 Sep 04.
Article En | MEDLINE | ID: mdl-34481473

BACKGROUND: Fatty liver disease prevalently occurs in commercial postpartum dairies, resulting in a worldwide high culling rate because of their subsequent limitations of production and reproduction performance. RESULTS: Fatty liver-specific proteome and acetylome analysis revealed that energy metabolism suppression closely associated with mitochondrial dysfunction and inflammation activation were shown to be remarkable biological processes underlying the development of fatty liver disease, furthermore, acetylation modification of proteins could be one of the main means to modulate these processes. Twenty pivotal genetic factors/genes that differentially expressing and being acetylation modified in liver were identified and proposed to regulate the pathogenesis of fatty liver dairies. These proteins were confirmed to be differentially expressing in individual liver tissue, eight of which being validated via immunohistochemistry assay. CONCLUSIONS: This study provided a comprehensive proteome and acetylome profile of fatty liver of dairy cows, and revealed potential important biological processes and essential regulators in the pathogenesis of fatty liver disease. Expectantly, understanding the molecular mechanisms of the pathogenesis of fatty liver disease in dairies, as an animal model of non-alcoholic fatty liver disease (NAFLD) in human beings, which is a clinico-pathologically defined process associated with metabolic syndrome, could inspire and facilitate the development of efficacious therapeutic drugs on NAFLD.


Non-alcoholic Fatty Liver Disease , Proteome , Animals , Cattle , Female , Humans , Inflammation , Mitochondria , Non-alcoholic Fatty Liver Disease/genetics
...