Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Dis ; 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38840485

RESUMEN

Hydrangea (Hydrangea macrophylla), commonly referred to as big leaf hydrangea, is a species within the Hydrangeaceae family notable for its ornamental value. Characterized by its vividly colored sepals and lush, striking inflorescences, this species is globally esteemed as both a potted and landscape plant. Notably, in 2022, an alarming incidence of stem rot was observed in approximately 40% of H. macrophylla plants aged between six and twelve months within 16 greenhouses situated in Nanjing City (N 31°14', E 118°22'), Jiangsu Province, China. Initial symptoms of the disease manifested as wet gray-black spots at the base of the seedlings and stems, progressing to a necrotic gray-white discoloration in the stems and accompanied by the growth of gray mold on the affected parts. This infection ultimately led to the wilting of the leaves and the death of the seedlings. For pathogen identification, stem tissues at the interface of diseased and healthy sections were excised, surface-sterilized with 75 % ethanol for 30 s, followed by a 2 - 3 min treatment with 3% sodium hypochlorite, and subsequently rinsed three times with sterile water before air drying. Sections measuring 2 - 3 mm were then cultured on potato dextrose agar (PDA) medium, supplemented with 50 mg/mL rifampicin (RFP), and incubated at 25 ℃ for 3 - 5 d (Zhou et al. 2022). Upon 2 - 3 days of incubation, notable growth of fungal colonies was observed. Mycelial clusters from the periphery of these colonies were subsequently transferred to fresh PDA plates and incubated at 25 ℃ for an additional 5 - 7 d. A particular colony, designated JSNJ2022-2 and now preserved at the Jiangsu Academy of Agricultural Sciences, was selected for detailed examination. This colony exhibited a flocculent texture, with a coloration ranging from grey-white to light brown. It was characterized by the presence of irregularly formed, hard sclerotia within the hyphae. The conidiophores were observed to be slender and erect, featuring dendritic branches at their extremities. The conidia were clustered on the conidiophore like grapes. These conidia were generally colorless or grey, oval in shape, smooth and transparent, and measured between 6.4 - 12.2 × 7.3 - 18.2 µm (n = 50). For genetic analysis, genomic DNA (gDNA) was extracted using the DNA secure Plant Kit (Tiangen Biotech, Beijing, China). Polymerase chain reaction (PCR) amplification was performed using a set of universal primers of ITS1/ITS4 (White et al. 1990), primers corresponding to the specific sequences of glyceraldehyde-3-phosphate dehydrogenase (G3PDH), heat-shock protein 60 (HSP60), and DNA-dependent RNA polymerase subunit II (RPB2) (Yang et al. 2020). The resultant PCR products were sequenced, and the resulting sequences were submitted to the GenBank database, under the accession numbers OP131597, OP142320, OP142321, and OP142322, respectively. BLAST analysis of the sequences obtained from the isolate JSNJ2022-2 revealed a high degree of genetic similarity, ranging from 99 to 100%, with known sequences of Botrytis cinerea (accessions MK051124.1, MH796662.1, MH479931.1, and KU760986.1). To elucidate the phylogenetic position of the isolate, a phylogenetic tree was constructed using the maximum likelihood method, supported by 1,000 bootstrap replications, in the Mega7 software (Kumar et al. 2016). The results of this analysis confirmed that the strains under study clustered within the same branch as B. cinerea. To establish the pathogenicity of the isolate, Koch's postulates (Falkow 1988) were employed. Healthy potted H. macrophylla seedlings, approximately three months old, were wound inoculated at the base of the seedlings with a 6 mm diameter mycelium plug of JSNJ2002-2 cultivated on PDA for 3 days, which was subsequently covered with moistened degreasing cotton. Control plants were treated with moistened degreasing cloths minus the pathogen. Post-inoculation, these plants were placed in a growth chamber maintained at 25 ℃ with a relative humidity range of 60 - 80%. After a 3-d incubation period, the inoculated plants displayed symptoms identical to those initially observed in the greenhouse. The pathogen was successfully re-isolated from these inoculated plants and was morphologically re-confirmed as B. cinerea, thus satisfying the criteria of Koch's postulates. To our knowledge, this report represents the first documented incidence of B. cinerea causing stem rot in H. macrophylla in China.

2.
Microbiol Res ; 286: 127789, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38870619

RESUMEN

Plants have developed intricate immune mechanisms to impede Phytophthora colonization. In response, Phytophthora secretes RxLR effector proteins that disrupt plant defense and promote infection. The specific molecular interactions through which Phytophthora RxLR effectors undermine plant immunity, however, remain inadequately defined. In this study, we delineate the role of the nuclear-localized RxLR effector PcAvh87, which is pivotal for the full virulence of Phytophthora cinnamomi. Gene expression analysis indicates that PcAvh87 expression is significantly upregulated during the initial infection stages, interacting with the immune responses triggered by the elicitin protein INF1 and pro-apoptotic protein BAX. Utilizing PEG/CaCl2-mediated protoplast transformation and CRISPR/Cas9-mediated gene editing, we generated PcAvh87 knockout mutants, which demonstrated compromised hyphal growth, sporangium development, and zoospore release, along with a marked reduction in pathogenicity. This underscores PcAvh87's crucial role as a virulence determinant. Notably, PcAvh87, conserved across the Phytophthora genus, was found to modulate the activity of plant immune protein 113, thereby attenuating plant immune responses. This implies that the PcAvh87-mediated regulatory mechanism could be a common strategy in Phytophthora species to manipulate plant immunity. Our findings highlight the multifaceted roles of PcAvh87 in promoting P. cinnamomi infection, including its involvement in sporangia production, mycelial growth, and the targeting of plant immune proteins to enhance pathogen virulence.

3.
FASEB J ; 38(10): e23708, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38805151

RESUMEN

Metacestodiasis is an infectious disease caused by the larval stage of cestode parasites. This disease poses a serious health hazard to wildlife, livestock, and humans, and it incurs substantial economic losses by impacting the safety of the livestock industry, the quality of meat production, and public health security. Unfortunately, there is currently no available molecular diagnostic method capable of distinguishing cysticercus- and Echinococcus-derived microRNAs (miRNAs) from other helminthes and hosts in the plasma of metacestode-infected animals. This study aims to develop a specific, sensitive, and cost-efficient molecular diagnostic method for cysticercosis and echinococcosis, particularly for early detection. The study developed a rolling circular amplification (RCA)-assisted CRISPR/Cas9 detection method based on parasite-derived miRNA let-7-5p. Using a series of dilutions of the let-7 standard, the limit of detection (LOD) of the qPCR, RCA, and RCA-assisted CRISPR/Cas9 methods was compared. The specificity of qPCR and CRISPR/Cas9 was evaluated using four artificially synthesized let-7 standards from different species. A total of 151 plasma samples were used to evaluate the diagnostic performance. Additionally, the study also assessed the correlation between plasma levels of let-7-5p, the number of Taenia pisiformis cysticerci, and the weight of Echinococcus multilocularis cysts. The results demonstrated that the RCA-assisted CRISPR/Cas9 assay could significantly distinguish let-7 from cestodes and other species, achieving a LOD of 10 aM; the diagnostic sensitivity and specificity for rabbit cysticercosis and mouse E. multilocularis were 100% and 97.67%, and 100% and 100%, respectively. Notably, let-7-5p gradually increased in the plasma of T. pisiformis-infected rabbits from 15 days post infection (dpi), peaked at 60 dpi, and persisted until 120 dpi. In E. multilocularis-infected mice, let-7-5p gradually increased from 15 dpi and persisted until 90 dpi. Furthermore, the expression of let-7-5p positively correlated with the number of cysticerci and cyst weight. These results indicated that the let-7-5p-based RCA-assisted CRISPR/Cas9 assay is a sensitive and specific detection method that can be used as a universal diagnostic method for metacestodiasis, particularly for early diagnosis (15 dpi).


Asunto(s)
Sistemas CRISPR-Cas , Cisticercosis , MicroARNs , Animales , MicroARNs/genética , MicroARNs/sangre , Ratones , Cisticercosis/diagnóstico , Cisticercosis/veterinaria , Cisticercosis/parasitología , Equinococosis/diagnóstico , Técnicas de Amplificación de Ácido Nucleico/métodos , Sensibilidad y Especificidad , Humanos
4.
Parasit Vectors ; 17(1): 163, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38553755

RESUMEN

BACKGROUND: Alveolar echinococcosis (AE) is an important infectious disease caused by the metacestode larvae of Echinococcus multilocularis, seriously threatening global public health security. Kupffer cells (KCs) play important roles in liver inflammatory response. However, their role in hepatic alveolar echinococcosis has not yet been fully elucidated. METHODS: In this study, qRT-PCR was used to detect the expression level of miR-374b-5p in KCs. The target gene of miR-374b-5p was identified through luciferase reporter assays and loss of function and gains. Critical genes involved in NFκB signaling pathway were analyzed by qRT-PCR and western blot. RESULTS: This study reported that miR-374b-5p was significantly upregulated in KCs during E. multilocularis infection and further showed that miR-374b-5p was able to bind to the 3'-UTR of the C/EBP ß gene and suppressed its expression. The expression levels of NF-κBp65, p-NF-κBp65 and pro-inflammatory factors including iNOS, TNFα and IL6 were attenuated after overexpression of miR-374b-5p while enhanced after suppression of miR-374b-5p. However, the Arg1 expression level was promoted after overexpression of miR-374b-5p while suppressed after downregulation of miR-374b-5p. Additionally, increased protein levels of NF-κBp65 and p-NF-κBp65 were found in the C/EBP ß-overexpressed KCs. CONCLUSIONS: These results demonstrated that miR-374b-5p probably regulated the expression of inflammatory factors via C/EBP ß/NF-κB signaling. This finding is helpful to explore the mechanism of inflammation regulation during E. multilocularis infection.


Asunto(s)
Equinococosis , MicroARNs , FN-kappa B , Animales , FN-kappa B/genética , FN-kappa B/metabolismo , Regulación hacia Abajo , MicroARNs/genética , MicroARNs/metabolismo , Macrófagos del Hígado/metabolismo , Transducción de Señal
5.
Plant Commun ; 5(5): 100830, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38297839

RESUMEN

Neonicotinoids (NEOs), a large class of organic compounds, are a type of commonly used pesticide for crop protection. Their uptake and accumulation in plants are prerequisites for their intra- and intercellular movements, transformation, and function. Understanding the molecular mechanisms that underpin NEO uptake by plants is crucial for effective application, which remains elusive. Here, we demonstrate that NEOs enter plant cells primarily through the transmembrane symplastic pathway and accumulate mainly in the cytosol. Two plasma membrane intrinsic proteins discovered in Brassica rapa, BraPIP1;1 and BraPIP2;1, were found to encode aquaporins (AQPs) that are highly permeable to NEOs in different plant species and facilitate NEO subcellular diffusion and accumulation. Their conserved transport function was further demonstrated in Xenopus laevis oocyte and yeast assays. BraPIP1;1 and BraPIP2;1 gene knockouts and interaction assays suggested that their proteins can form functional heterotetramers. Assessment of the potential of mean force indicated a negative correlation between NEO uptake and the energy barrier of BraPIP1;1 channels. This study shows that AQPs transport organic compounds with greater osmolarity than previously thought, providing new insight into the molecular mechanisms of organic compound uptake and facilitating innovations in systemic pesticides.


Asunto(s)
Acuaporinas , Acuaporinas/metabolismo , Acuaporinas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Transporte Biológico , Neonicotinoides/metabolismo , Animales , Plaguicidas/metabolismo , Xenopus laevis/metabolismo , Brassica rapa/metabolismo , Brassica rapa/genética , Oocitos/metabolismo , Insecticidas/metabolismo
6.
Heliyon ; 9(12): e22832, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38076154

RESUMEN

Drawing on social norm theory, this study delves into the nexus between real earnings manipulation (REM) and Environmental, Social, and Governance (ESG) disclosure within Egypt's emerging capital market. By analyzing data from the S&P/EGX ESG index (2013-2018) through a two-stage regression analysis, we unearth a noteworthy pattern: heightened REM practices correspond with reduced tendencies for ESG sustainability disclosure. Notably, this association is moderated by managerial ownership, which diminishes the negative linkage between REM and ESG transparency. A unique cultural insight emerges, revealing that religiously-aligned firms leverage REM as a risk-mitigation mechanism, leading to curtailed ESG disclosures. Our findings cast a spotlight on a possible managerial tilt towards short-term gains, often overshadowing long-term sustainability imperatives, especially in religiously influenced contexts. As we advance understanding of REM-ESG dynamics in religious emerging markets, our study highlights the pressing need for enhanced sustainability consciousness and accountability in these regions.

7.
Plant Dis ; 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38037203

RESUMEN

Peanut (Arachis hypogaea) is an important economic and oil crop in China. In September 2022, leaf spots were observed on peanut in Luoyang city, Henan province, China (34°49'N, 112°37'E). The disease occurred on about 30% of the peanut leaves in only one 0.5-acre field. Symptoms appeared primarily as brown spots, that varied in shape, and appeared round, oval or irregular. In addition, some disease patches exhibited a concentric ring pattern. Small pieces (5×5 mm) of five diseased leaves were surface disinfected in 3% NaClO for 2 minutes, rinsed three times in sterile distilled water, dried on sterilized filter paper, and cultured on potato dextrose agar (PDA) at 25°C for 3 days. Five isolates with uniform characteristics were obtained and subcultured by transferring hyphal tips to fresh PDA. The colonies of the isolates were circular and the margins were clean. The colonies showed white coloration, and after 5-7 days of incubation on PDA plates, concentric rings with dark green sporodochia appeared on the surface of the colonies. The conidiophores branched repeatedly. The conidiophore stipes unbranched, hyaline, 10.0 to 23.2×1.5 to 3.3 µm (n=50). The conidia were rod-shaped or long oval and single-celled, measuring 4.6 to 8.6×1.4 to 3.1 µm (n=100). Based on these characteristics, the five isolates were identified as Paramyrothecium foliicola (Lombard et al 2016). Genomic DNA was extracted from the representative isolates LH-1-1 and LH-1-2. The internal transcribed spacer (ITS), RNA polymerase II second largest subunit (RPB2), calmodulin (CmdA), and translation elongation factor 1-alpha (tef1) loci were amplified and sequenced using the following primer pairs: ITS1/ITS4 (White et al. 1990), RPB2-5F2/RPB2-7cR (O'Donnell et al. 2007), CAL-228F/CAL-2Rd (Carbone & Kohn 1999), and EF1-728F/EF2 (O'Donnell et al. 1998), respectively. BLASTn analysis revealed that the sequences of ITS (OR352397.1 and OR417392.1), RPB2 (OR413573.1 and OR420678.1), CmdA (OR413572.1 and OR420677.1), and tef1 (OR413574.1 and OR420679.1) had 99 to 100% (553/558 bp, 721/721 bp, 597/598 bp, and 384/389 bp) similarity to P. foliicola (MN593634.1, MN398038.1, OM801785.1, MK335967.1). A phylogenetic tree based on the Maximum Likelihood method also confirmed that the two isolates converge on the same branch as P. foliicola. Pathogenicity tests were performed using leaves of 60-day-old peanut plants (cv. Zhonghua 8). Briefly, uninfected healthy leaves (non-wounded) were inoculated with 30-µl drops containing a spore suspension (5×105 conidia/ml) of LH-1-2, and peanut leaves inoculated with sterile distilled water served as controls. All treatments were incubated in an incubator at 25℃ and high relative humidity with a 12:12 hour light-dark cycle. After 5-7 days, inoculated leaves showed symptoms similar to those observed in the field, while no symptoms were observed on control leaves. The pathogenicity tests were repeated three times. The fungus was reisolated from the infected leaves and identified as P. foliicola based on morphological and molecular characteristics, thus fulfilling Koch's postulates. P. foliicola has previously been reported to cause leaf spot of tomato and mung bean, stem canker of cucumber (Huo et al. 2022; Sun et al.2020; Huo et al. 2021). To our knowledge, this is the first report of P. foliicola causing leaf spot on peanut in the world. Identification of this pathogen will be helpful in monitoring peanut diseases and developing disease control strategies.

8.
Front Immunol ; 14: 1201455, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37559722

RESUMEN

Cysticercosis pisiformis, a highly prevalent parasitic disease worldwide, causes significant economic losses in the rabbit breeding industry. Previous investigations have identified a novel microRNA, designated as novel-miR1, within the serum of rabbit infected with Cysticercus pisiformis. In the present study, we found that C. pisiformis-derived novel-miR1 was released into the rabbit serum via exosomes. Through computational analysis using TargetScan, miRanda, and PITA, a total of 634 target genes of novel-miR1 were predicted. To elucidate the functional role of novel-miR1, a dual-luciferase reporter assay was utilized and demonstrated that novel-miR1 targets rabbit Toll-like receptor 2 (TLR2). Rabbit peripheral blood lymphocytes (PBLCs) were transfected with novel-miR1 mimic and mimic NC, and the in vitro experiments confirmed that novel-miR1 suppressed the expression of pro-inflammatory cytokines such as TNF-α, IL-1ß, and IL-6 through the nuclear factor kappa B (NF-κB) pathway. In vivo experiments demonstrated that novel-miR1 was significantly upregulated during the 1-3 months following infection with C. pisiformis in rabbits. Notably, this upregulation coincided with a downregulation of TLR2, P65, pP65, TNF-α, IL-1ß, and IL-6 in PBLCs. Collectively, these results indicate that the novel-miR1 derived from C. pisiformis inhibited the rabbits' immune response by suppressing the NF-κB-mediated immune response. This immune modulation facilitates parasite invasion, survival, and establishment of a persistent infection.


Asunto(s)
Cysticercus , FN-kappa B , Animales , Conejos , Cysticercus/metabolismo , FN-kappa B/metabolismo , Receptor Toll-Like 2/metabolismo , Interleucina-6 , Factor de Necrosis Tumoral alfa , Inmunidad
9.
Genes Dis ; 10(4): 1457-1469, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37397560

RESUMEN

microRNAs (miRNAs) are a class of non-coding functional small RNA composed of 21-23 nucleotides, having multiple associations with liver fibrosis. Fibrosis-associated miRNAs are roughly classified into pro-fibrosis or anti-fibrosis types. The former is capable of activating hepatic stellate cells (HSCs) by modulating pro-fibrotic signaling pathways, mainly including TGF-ß/SMAD, WNT/ß-catenin, and Hedgehog; the latter is responsible for maintenance of the quiescent phenotype of normal HSCs, phenotypic reversion of activated HSCs (aHSCs), inhibition of HSCs proliferation and suppression of the extracellular matrix-associated gene expression. Moreover, several miRNAs are involved in regulation of liver fibrosis via alternative mechanisms, such as interacting between hepatocytes and other liver cells via exosomes and increasing autophagy of aHSCs. Thus, understanding the role of these miRNAs may provide new avenues for the development of novel interventions against hepatic fibrosis.

10.
Front Cell Infect Microbiol ; 13: 1218105, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37441240

RESUMEN

Introduction: Phytophthora ramorum is a quarantine pathogen that causes leaf blight and shoot dieback of the crown, bark cankers and death on a number of both ornamental and forest trees, especially in North America and northern Europe, where it has produced severe outbreaks. Symptoms caused by P. ramorum can be confused with those by other Phytophthora and fungal species. Early and accurate detection of the causal pathogen P. ramorum is crucial for effective prevention and control of Sudden Oak Death. Methods: In this study, we developed a P. ramorum detection technique based on a combination of recombinase polymerase amplification (RPA) with CRISPR/Cas12a technology (termed RPACRISPR/ Cas12a). Results: This novel method can be utilized for the molecular identification of P. ramorum under UV light and readout coming from fluorophores, and can specifically detect P. ramorum at DNA concentrations as low as 100 pg within 25 min at 37°C. Discussion: We have developed a simple, rapid, sensitive, unaided-eye visualization, RPA CRISPR/Cas12a-based detection system for the molecular identification of P. ramorum that does not require technical expertise or expensive ancillary equipment. And this system is sensitive for both standard laboratory samples and samples from the field.


Asunto(s)
Sistemas CRISPR-Cas , Phytophthora , Phytophthora/genética , ADN , Europa (Continente) , América del Norte
11.
Genomics ; 115(5): 110690, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37488054

RESUMEN

Infection of Taenia pisiformis cysticercus is very frequently found in lagomorphs and causes serious economic losses to rabbit breeding industry. T. pisiformis cysticercus has evolved numerous strategies to manipulate their hosts. The release of exosomes is of importance in the interaction between host and parasite. However, the mechanism by which T. pisiformis cysticercus evades the host immune system for long-term survival within the host remains unclear. Using small RNA sequencing and TMT labelling proteomic, we profiled the expression patterns of miRNAs and proteins in rabbit peritoneal macrophages treated with T. pisiformis cysticercus exosomes. Seven differentially expressed (DE)-miRNAs and six DE-proteins were randomly selected to validate the accuracy of the sequencing data by qRT-PCR or western blot. Functions of DE-miRNAs and proteins were analyzed using public data bases. And DE-miRNAs-DE-proteins correlation network were established. CCK-8 assay was used to evaluate the effect of exosomes on macrophages proliferation. Cell cycle of macrophages, isolated from T. pisiformis-infected rabbits, was determined using flow cytometry. A total of 21 miRNAs were significantly differentially expressed, including three worm-derived miRNAs. The expressions of miRNAs and proteins were consistent with the sequencing results. DE-miRNAs targets were related to cell proliferation and apoptosis. Exosomes treatment resulted in a decrease of macrophages proliferation. In vivo, T. pisiformis cysticercus significantly induced S phase cell arrest. Moreover, DE-proteins were related to production of interferon-gamma and interleukin-12, and immunoregulation. Correlation network analysis revealed a negative correlation relationship between DE-miRNAs and DE-proteins. Among them, novel334 and tpi-let-7-5p have potential regulatory effects on IL1ß and NFκB2 respectively, which imply that novel334-IL1ß/tpi-let-7-5p-NFκB2 axis may be an important way that T. pisiformis cysticercus modulates host immune response through exosomes. Further understanding of these potential regulatory mechanisms will contribute to clarify the mechanism of escape mediated by T. pisiformis exosomes.


Asunto(s)
Exosomas , MicroARNs , Taenia , Animales , Conejos , Cysticercus/genética , Taenia/genética , MicroARNs/genética , Macrófagos Peritoneales , Exosomas/genética , Proteómica
12.
Front Cell Infect Microbiol ; 13: 1208837, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37305413

RESUMEN

Introduction: Phytophthora sojae is among the most devastating pathogens of soybean (Glycine max) and severely impacts soybean production in several countries. The resulting disease can be difficult to diagnose and other Phytophthora species can also infect soybean. Accurate diagnosis is important for management of the disease caused by P. sojae. Methods: In this study, recombinase polymerase amplification (RPA) in combination with the CRISPR/Cas12a system were used for detection of P. sojae. The assay was highly specific to P. sojae. Results: The test results were positive for 29 isolates of P. sojae, but negative for 64 isolates of 29 Phytophthora species, 7 Phytopythium and Pythium species, 32 fungal species, and 2 Bursaphelenchus species. The method was highly sensitive, detecting as little as 10 pg.µL-1 of P. sojae genomic DNA at 37°C in 20 min. The test results were visible under UV light and readout coming from fluorophores. In addition, P. sojae was detected from natural inoculated hypocotyls of soybean seedlings using this novel assay. The rapidity and accuracy of the method were verified using 30 soybean rhizosphere samples. Discussion: In conclusion, the RPA-CRISPR/Cas12a detection assay developed here is sensitive, efficient, and convenient, and has potential for further development as a kit for monitoring root rot of soybean in the field.


Asunto(s)
Phytophthora , Recombinasas , Phytophthora/genética , Sistemas CRISPR-Cas , Nucleotidiltransferasas , Colorantes Fluorescentes
13.
Front Cell Dev Biol ; 10: 798551, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35399512

RESUMEN

The larvae of Echinococcus multilocularis causes alveolar echinococcosis, which poses a great threat to the public health. However, the molecular mechanisms underlying the host and parasite interactions are still unclear. Exploring the transcriptomic maps of mRNA, miRNA and lncRNA expressed in the liver in response to E. multilocularis infection will help us to understand its pathogenesis. Using liver perfusion, different cell populations including the hepatic cells, hepatic stellate cells and Kupffer cells were isolated from mice interperitoneally inoculated with protoscoleces. Their transcriptional profiles including lncRNAs, miRNAs and mRNAs were done by RNA-seq. Among these cell populations, the most differentially-expressed (DE) mRNA, lncRNAs and miRNAs were annotated and may involve in the pathological processes, mainly including metabolic disorders, immune responses and liver fibrosis. Following the integrative analysis of 38 differentially-expressed DEmiRNAs and 8 DElncRNAs, the lncRNA-mRNA-miRNA networks were constructed, including F63-miR-223-3p-Fbxw7/ZFP36/map1b, F63-miR-27-5p-Tdrd6/Dip2c/Wdfy4 and IFNgAS1-IFN-γ. These results unveil the presence of several potential lncRNA-mRNA-miRNA axes during E. multilocularis infection, and further exploring of these axes may contribute to better understanding of the pathogenic mechanisms.

14.
Front Vet Sci ; 9: 825307, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35400095

RESUMEN

Caused by Echinococcus multilocularis (E. multilocularis), alveolar echinococcosis is reported every year around the world and severely threatens the safety of human beings and animals. However, the molecular interaction relationships between host and E. multilocularis still remains unclear. With multiple functions, circRNA plays a crucial role in regulating the development of a parasitic disease. With that in mind, the main purpose of this study was to reveal the circRNA expression profiles and circRNA-miRNA-mRNA network relationships in hepatocytes (HCs), hepatic stellate cells (HSCs), and Kupffer cells (KCs) of murine liver after E. multilocularis infection. After sequencing, 6,290 circRNAs were identified from 12 hepatic cell samples. Based on the subsequent analysis, 426 and 372 circRNAs were significantly different in HC expression at 2 and 3 months after E. multilocularis infection, and similar results were also demonstrated in HSCs (426 and 372 circRNAs) and KCs (429 and 331 circRNAs), respectively. Eight candidate circRNAs were randomly selected to identify the accuracy of the sequencing results by using qRT-PCR. Additionally, three circRNAs-miRNA-mRNA networks in HCs, HSCs, and KCs were constructed. Taken together, our study provided a systematic presentation of circRNAs in murine liver cells after E. multilocularis infection, and these networks are essential for research in circRNAs associated with E. multilocularis infection.

15.
Front Microbiol ; 13: 853202, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35308383

RESUMEN

Setosphaeria turcica is a heterothallic fungus that is the causal agent of northern leaf blight (NLB), which is a devastating foliar disease of sorghum and maize. Despite of its adversary to crop production, little is known about the genetic diversity and population genetic structure of this pathogen from sorghum. In this study, we explored the utilization of single nucleotide polymorphism (SNP) molecular markers and three mating type-specific primers to analyze the genetic diversity, population genetic structure, and mating type distribution of 87 S. turcica isolates that had been collected in sorghum production areas from three provinces, including Henan, Shaanxi, and Shanxi in China. The populations are featured with moderate genetic diversity and relatively equal mating type distribution of MAT1-1 and MAT1-2. The genetic differentiation was significant (p < 0.05) among different populations except those from Henan and Shanxi provinces that showed particularly frequent gene flow between them. Neither the maxinum likelihood phylogenetic tree, nor principal coordinate analysis, nor genetic structure analysis was able to completely separate the three populations. The relatively low genetic distance and high genetic identification were also observed among the three populations. Nevertheless, the genetic variation within populations was the major source of variation as revealed by AMOVA analysis. The findings of this study have improved our current understanding about the genetic diversity, population genetic structure, and the distribution of mating type of S. turcica, which are useful for unraveling the epidemiology of NLB and developing effective disease management strategies.

16.
Phytopathology ; 112(8): 1723-1729, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35224980

RESUMEN

Verticillium dahliae is a broad host-range phytopathogenic fungus that causes destructive vascular wilt on plants worldwide. Cytochrome P450 monooxygenases, also known as CYPs/P450s, are broadly distributed in organisms and are involved in a diverse array of molecular/metabolic processes. In this study, using reverse transcription quantitative PCR analysis, we observed that the expression of a P450 gene (Chr2g00380) in the E-class P450, group IV from V. dahliae isolate JR2 was highly induced during tomato infection. Targeted deletion of Chr2g00380 in JR2 did not affect hyphal growth and morphology; however, the mutants exhibited increased sensitivity to H2O2 and defects in melanized microsclerotia formation compared with the wild type. Loss of Chr2g00380 resulted in reduced virulence on tomato and tobacco plants but did not cause phenotypic changes in infection structure formation or in the penetration of cellophane membranes. These data provide evidence for an involvement of a cytochrome P450 monooxygenase in virulence in V. dahliae.


Asunto(s)
Solanum lycopersicum , Verticillium , Acremonium , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Peróxido de Hidrógeno/metabolismo , Enfermedades de las Plantas/microbiología , Especies Reactivas de Oxígeno/metabolismo , Virulencia/genética
17.
Plant Biotechnol J ; 20(4): 722-735, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34812570

RESUMEN

Drought and Verticillium wilt disease are two main factors that limit cotton production, which necessitates the identification of key molecular switch to simultaneously improve cotton resistance to Verticillium dahliae and tolerance to drought stress. R2R3-type MYB proteins could play such a role because of their conserved functions in plant development, growth, and metabolism regulation, however, till date a MYB gene conferring the desired resistance to both biotic and abiotic stresses has not been found in cotton. Here, we describe the identification of GhMYB36, a gene encoding a R2R3-type MYB protein in Gossypium hirsutum, which confers drought tolerance and Verticilium wilt resistance in both Arabidopsis and cotton. GhMYB36 was highly induced by PEG-simulated drought stress in G. hirsutum. GhMYB36-silenced cotton plants were more sensitive to both drought stress and Verticillium wilt. GhMYB36 overexpression in transgenic Arabidopsis and cotton plants gave rise to improved drought tolerance and Verticillium wilt resistance. Transient expression of fused GhMYB36-GFP in tobacco cells was able to localize GhMYB36 in the cell nucleus. In addition, RNA-seq analysis together with qRT-PCR validation in transgenic Arabidopsis overexpressing GhMYB36 revealed significantly enhanced PR1 expression. Luciferase interaction assays indicated that GhMYB36 are probably bound to the promoter of PR1 to activate its expression and the interaction, which was further verified by Yeast one hybrid assay. Taken together, our results suggest that GhMYB36 functions as a transcription factor that is involved in drought tolerance and Verticillium wilt resistance in Arabidopsis and cotton by enhancing PR1 expression.


Asunto(s)
Arabidopsis , Verticillium , Arabidopsis/metabolismo , Resistencia a la Enfermedad/genética , Expresión Génica , Regulación de la Expresión Génica de las Plantas/genética , Gossypium/metabolismo , Enfermedades de las Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Estrés Fisiológico/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
18.
ACS Appl Mater Interfaces ; 13(49): 58838-58847, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34851081

RESUMEN

The polarization curve is the most important profile to evaluate the performance of proton-exchange membrane fuel cells (PEMFCs). To explore the important thermodynamic parameters and their correlation with the composition, fabrication, and operational settings, a comprehensive data set consisting of 446 polarization curves from 191 perfluorosulfonate and 255 sulfonated hydrocarbon-based PEMs is collected. Then, a Markov chain Monte Carlo simulation within the Bayesian frame provides higher than 93% confidence to extract six important thermodynamic parameters including open-circuit potential, the transfer coefficient, the current loss, the reference exchange current density, the internal resistance, and the limiting current density. An extreme gradient boosting algorithm affords a mean determinative coefficient of 0.89 to predict the whole polarization curve and a confidence of 94% to predict the peak power density (PPD). Both approaches to explore the polarization curve for PEMFCs show good robustness in the blind test. Overall, the PPD is positively correlated with the ion-exchange capacity of the polymer, operational temperature, and humidity and is negatively affected by internal resistance, membrane thickness, and the loading of the catalyst. The flow rate of fuels can effectively enhance them, while the increase of catalyst loading or fuel concentration shows deleterious impacts.

19.
BMC Genomics ; 22(1): 884, 2021 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-34872498

RESUMEN

BACKGROUND: Bovine viral diarrhea virus (BVDV) is a major pathogen that causes bovine viral diarrhea/mucosal disease (BVD-MD), which has become a global infectious disease due to its wide spread and the lack of effective treatment. The process of BVDV infection is complex. Once infected, host immune cells are activated and modulated. As a major immune cell, peripheral blood lymphocyte cells (PBLCs) are the primary target of BVDV. In order to further understand the mechanism of BVDV- host interaction, the expression profiles of host lymphocytes mRNAs associated with BVDV infection were investigated by transcriptomic sequencing analysis. RESULTS: The transcriptomic sequencing analysis was performed on bovine PBLCs infected with CP BVDV-2 GS2018 after 12 h of infection. Gene expression profiling demonstrated that 1052 genes were differentially expressed in GS2018 infected PBLCs compared with the control group. Of these genes, 485 genes were up-regulated and 567 were down-regulated. The 19 differential expressed genes (DEGs) were selected for validation using quantitative real-time PCR and the results were consistent with the results of RNA-Seq. Gene ontology enrichment and KEGG pathway analysis showed that 1052 DEGs were significantly enriched in 16 pathways, including cytokine-cytokine receptor interaction, IL17, PI3K-Akt, MAPK and TNF signaling pathway. PPI network analysis showed that IL17A, IFN-γ and TNF-α interacted with various proteins and may play crucial roles in BVDV-2 infection. Of note, we confirmed that GS2018 induced Th17 cell differentiation in PBLCs and persistently increased the expression levels of IL17A. In turn, the replication of GS2018 was inhibited by IL17A. CONCLUSION: In this study, the transcription changes of DEGs related to host immune responses in bovine PBLCs were caused by CP BVDV-2 infection. In particular, the effector molecules IL17A of Th17 cells were significantly up-regulated, which inhibited viral replication. These results will contribute to exploration and further understanding of the host immune response mechanism and interaction between host and BVDV-2.


Asunto(s)
Virus de la Diarrea Viral Bovina Tipo 2 , Virus de la Diarrea Viral Bovina , Diferenciación Celular , Fosfatidilinositol 3-Quinasas , Células Th17
20.
Genes (Basel) ; 12(10)2021 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-34680985

RESUMEN

Cysticercus pisiformis (C. pisiformis), the larval form of Taenia pisiformis, parasitize mainly the liver, omentum and mesentery of rabbits and cause huge economic losses in the rabbit breeding industry. MicroRNA (miRNA), a short non-coding RNA, is widely and stably distributed in the plasma and serum. Numerous data demonstrates that, after parasitic infection, miRNAs become the key regulatory factor for controlling host biological processes. However, the roles of serum miRNAs in C. pisiformis-infected rabbits have not been elucidated. In this study, we compared miRNA expression profiles between the C. pisiformis-infected and healthy rabbit serum using RNA-seq. A total of 192 miRNAs were differentially expressed (fold change ≥ 2 and p < 0.05), including 79 up- and 113 downregulated miRNAs. These data were verified by qRT-PCR (real time quantitative polymerase chain reaction) analysis. Additionally, GO analysis showed that the target genes of these dysregulated miRNAs were most enriched in cellular, single-organism and metabolic processes. KEGG pathway analysis showed that these miRNAs target genes were involved in PI3K-Akt, viral carcinogenesis and B cell receptor signaling pathways. Interestingly, after aligning clean reads to the T. pisiformis genome, four (miR-124-3p_3, miR-124-3p_4, miR-124a and novel-miR1) T. pisiformis-derived miRNAs were found. Of these, novel-miR1was upregulated in different periods after C. pisiformis infection, which was verified qRT-PCR, and pre- novel-miR-1 was amplified from the cysticerci by RT-PCR, implying novel-miR-1 was derived from C. pisiformis and has great potential for the diagnosis of Cysticercosis pisiformis infection. This is the first investigation of miRNA expression profile and function in the serum of rabbits infected by C. pisiformis, providing fundamental data for developing diagnostic targets for Cysticercosis pisiformis.


Asunto(s)
Cisticercosis/sangre , Cysticercus/genética , Perfilación de la Expresión Génica , MicroARNs/genética , Animales , Ontología de Genes , Conejos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...