Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 707
Filtrar
1.
Mol Med Rep ; 30(3)2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38963039

RESUMEN

 The incidence of Alzheimer's disease (AD) is rising globally, yet its treatment and prediction of this condition remain challenging due to the complex pathophysiological mechanisms associated with it. Consequently, the objective of the present study was to analyze and characterize the molecular mechanisms underlying ferroptosis­related genes (FEGs) in the pathogenesis of AD, as well as to construct a prognostic model. The findings will provide new insights for the future diagnosis and treatment of AD. First, the AD dataset GSE33000 from the Gene Expression Omnibus database and the FEGs from FerrDB were obtained. Next, unsupervised cluster analysis was used to obtain the FEGs that were most relevant to AD. Subsequently, enrichment analyses were performed on the FEGs to explore biological functions. Subsequently, the role of these genes in the immune microenvironment was elucidated through CIBERSORT. Then, the optimal machine learning was selected by comparing the performance of different machine learning models. To validate the prediction efficiency, the models were validated using nomograms, calibration curves, decision curve analysis and external datasets. Furthermore, the expression of FEGs between different groups was verified using reverse transcription quantitative PCR and western blot analysis. In AD, alterations in the expression of FEGs affect the aggregation and infiltration of certain immune cells. This indicated that the occurrence of AD is strongly associated with immune infiltration. Finally, the most appropriate machine learning models were selected, and AD diagnostic models and nomograms were built. The present study provided novel insights that enhance understanding with regard to the molecular mechanism of action of FEGs in AD. Moreover, the present study provided biomarkers that may facilitate the diagnosis of AD.


Asunto(s)
Enfermedad de Alzheimer , Ferroptosis , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/inmunología , Ferroptosis/genética , Humanos , Aprendizaje Automático , Bases de Datos Genéticas , Perfilación de la Expresión Génica , Biomarcadores , Pronóstico , Regulación de la Expresión Génica , Biología Computacional/métodos
2.
Microbiol Spectr ; 12(7): e0000824, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38860788

RESUMEN

Redundant carbapenemase-producing (RCP) bacteria, which carry double or multiple carbapenemases, represent a new and concerning phenomenon. The objective of this study is to conduct a comprehensive analysis of the epidemiology and genetic mechanisms of RCP strains to support targeted surveillance and control measures. A retrospective analysis was conducted using surveillance data from 277 articles. Statistical analysis was performed to determine and evaluate species prevalence, proportions of carbapenemases, antibiotic susceptibility profiles, sample information, and patient outcomes. Complete plasmid sequencing data were utilized to investigate potential antimicrobial resistance or virulence advantages that strains may gain from acquiring redundant carbapenemases. RCP bacteria are widely distributed globally, and their prevalence is increasing over time. Several countries, including China, India, Iran, Turkey, and South Korea, have reported more than 100 RCP strains. The most commonly reported RCP species are Klebsiella pneumoniae and Acinetobacter baumannii, which exhibit varying proportions of carbapenemase combinations. Certain species-carbapenemase combinations, such as K. pneumoniae carrying New Delhi metallo-ß-lactamase (NDM) + oxacillinase (OXA) (56.76%) and K. pneumoniae carbapenemase (KPC) + Verona integron-encoded metallo-ß-lactamase (VIM) (50.00%) carbapenemases, are associated with high mortality rates. In patients with RCP strains isolated from the bloodstream and respiratory system, the mortality rates are 58.70% and 69.23%, respectively. Analysis of plasmids from RCP strains suggests that they may acquire additional antibiotic resistance phenotypes and virulence factors. Carbapenem-resistant bacteria carrying redundant carbapenemases pose a significant global health threat. This study provides valuable insights into the epidemiology and genetic mechanisms of these bacteria, supporting the development of effective control and prevention strategies to mitigate their transmission.IMPORTANCEThis study examined the global distribution patterns of 1,780 bacteria with double or multiple carbapenemases from 277 articles and assessed their clinical impact. The presence of multiple carbapenemases increases the chances of co-resistance to other classes of antibiotics and more virulence factors, further complicating the clinical management of infections.


Asunto(s)
Antibacterianos , Proteínas Bacterianas , beta-Lactamasas , beta-Lactamasas/genética , beta-Lactamasas/metabolismo , Humanos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Virulencia/genética , Antibacterianos/farmacología , Estudios Retrospectivos , Pruebas de Sensibilidad Microbiana , Farmacorresistencia Bacteriana Múltiple/genética , Plásmidos/genética , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/efectos de los fármacos , Klebsiella pneumoniae/enzimología , Klebsiella pneumoniae/patogenicidad , Klebsiella pneumoniae/aislamiento & purificación , Carbapenémicos/farmacología , Relevancia Clínica
3.
Imeta ; 3(3): e201, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38898978

RESUMEN

A large number of oceanic metagenomic data and environmental metadata have been published. However, most studies focused on limited ecosystems using different analysis tools, making it challenging to integrate these data into robust results and comprehensive global understanding of marine microbiome. Here, we constructed a systematic and quantitative analysis platform, the Microbiome Atlas/Sino-Hydrosphere for Ocean Ecosystem (MASH-Ocean: https://www.biosino.org/mash-ocean/), by integrating global marine metagenomic data and a unified data processing flow. MASH-Ocean 1.0 comprises 2147 metagenomic samples with five analysis modules: sample view, diversity, function, biogeography, and interaction network. This platform provides convenient and stable support for researchers in microbiology, environmental science, and biogeochemistry, to ensure the integration of omics data generated from hydrosphere ecosystems, to bridge the gap between elusive omics data and biological, ecological, and geological discovery, ultimately to foster the formation of a comprehensive atlas for aquatic environments.

4.
Front Microbiol ; 15: 1422202, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38903796

RESUMEN

Background: Salmonella enteritidis (S. enteritidis), a zoonotic pathogen with a broad host range, presents a substantial threat to global public health safety. Vaccination stands as an effective strategy for the prevention and control of S. enteritidis infection, highlighting an immediate clinical need for the creation of safe and efficient attenuated live vaccines. Methods: In this study, a S. enteritidis peptidoglycan-associated lipoprotein (pal) gene deletion strain (Δpal), was constructed. To assess its virulence, we conducted experiments on biofilm formation capability, motility, as well as cell and mouse infection. Subsequently, we evaluated the immune-protective effect of Δpal. Results: It was discovered that deletion of the pal gene reduced the biofilm formation capability and motility of S. enteritidis. Cell infection experiments revealed that the Δpal strain exhibited significantly decreased abilities in invasion, adhesion, and intracellular survival, with downregulation of virulence gene expression, including mgtC, invH, spvB, sipA, sipB, ssaV, csgA, and pipB. Mouse infection experiments showed that the LD50 of Δpal increased by 104 times, and its colonization ability in mouse tissue organs was significantly reduced. The results indicated that the pal gene severely affected the virulence of S. enteritidis. Further, immunogenicity evaluation of Δpal showed a significant enhancement in the lymphocyte transformation proliferation capability of immunized mice, producing high titers of specific IgG and IgA, suggesting that Δpal possesses good immunogenicity. Challenge protection tests demonstrated that the strain could provide 100% immune protection against wild-type strains in mice. Discussion: This study proves that the pal gene influences the virulence of S. enteritidis, and Δpal could serve as a candidate strain for attenuated live vaccines, laying the foundation for the development of attenuated live vaccines against Salmonella.

5.
ACS Nano ; 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38940334

RESUMEN

Lithium-sulfur (Li-S) batteries are promising for next-generation high-energy energy storage systems. However, the slow reaction kinetics render mobile polysulfides hardly controlled, yielding shuttling effects and eventually damaging Li metal anodes. To improve the cyclability of Li-S batteries, high-efficiency catalysts are desired to accelerate polysulfide conversion and suppress the shuttling effect. Herein, we studied a doping system with Ni2P and Ni2B as the end members and found a B-doped Ni2P catalyst that demonstrates high activity for Li-S batteries. As anionic dopants, B demonstrates an interesting reverse electron transfer to P and tunes the electronic structure of Ni2P dramatically. The resultant B-doped Ni2P exhibits short Ni-B bonds and strong Ni-S interaction, and the electron donation of B to P further enhances the adsorption of polysulfide on catalysts. The S-S bonds of polysulfides were activated appropriately, therefore decreasing a low energy barrier for conversion reactions.

6.
Angew Chem Int Ed Engl ; 63(29): e202406465, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38705847

RESUMEN

The surrounding hydrogen bond (H-bond) interaction around the active sites plays indispensable functions in enabling the organic electrode materials (OEMs) to fulfill their roles as ion reservoirs in aqueous zinc-organic batteries (ZOBs). Despite important, there are still no works could fully shed its real effects light on. Herein, quinone-based small molecules with a H-bond evolution model has been rationally selected to disclose the regulation and equilibration of H-bond interaction between OEMs, and OEM and the electrolyte. It has been found that only a suitable H-bond interaction could make the OEMs fully liberate their potential performance. Accordingly, the 2,5-diaminocyclohexa-2,5-diene-1,4-dione (DABQ) with elaborately designed H-bond structure exhibits a capacity of 193.3 mAh g-1 at a record-high mass loading of 66.2 mg cm-2 and 100 % capacity retention after 1500 cycles at 5 A g-1. In addition, the DABQ//Zn battery also possesses air-rechargeable ability by utilizing the chemistry redox of proton. Our results put forward a specific pathway to precise utilization of H-bond to liberate the performance of OEMs.

7.
Artículo en Inglés | MEDLINE | ID: mdl-38814613

RESUMEN

Objective: To explore how miRNA-28-3p targets BIN1 and affects the biological behavior of nasopharyngeal carcinoma cells, and to evaluate its potential as a predictive biomarker for NPC. Methods: We studied 100 nasopharyngeal carcinoma patients who underwent surgery between January 2021 and January 2022. Tissues from tumors and adjacent normal areas were analyzed. Participants were categorized into two groups: one with nasopharyngeal carcinoma and another with adjacent normal tissue. Additionally, the nasopharyngeal carcinoma cell line CNE-2 was divided into three groups: an untreated control, a negative control with NC plasmid, and a test group treated with a miRNA-28-3p inhibitor. Key techniques included PCR, Western blotting, CCK-8, flow cytometry, focusing on the interactions between miRNA-28-3p and BIN1 and their predictive significance for NPC. Results: miRNA-28-3p levels were significantly higher in nasopharyngeal carcinoma tissues compared to adjacent normal tissues (P < .05). The predictive performance of miRNA-28-3p for NPC featured an AUC > 0.75 with sensitivity and specificity both exceeding 70% (P < .001). In nasopharyngeal carcinoma cells, miRNA-28-3p levels were significantly elevated compared to normal cells (P < .05). Transfection with the miRNA-28-3p inhibitor increased apoptosis and BIN1 protein levels while reducing cell proliferation, invasion, and migration significantly (P < .05). Conclusion: miRNA-28-3p is overexpressed in nasopharyngeal carcinoma and inhibits tumor cell proliferation, migration, and invasion, while promoting apoptosis by targeting BIN1. The level of miRNA-28-3p expression serves as a sensitive indicator for predicting nasopharyngeal carcinoma, affirming its potential as a diagnostic biomarker and underscoring the significance of these findings in enhancing understanding and clinical management of NPC.

8.
ACS Synth Biol ; 13(5): 1434-1441, 2024 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-38695987

RESUMEN

Enzymatic cascades have become a green and sustainable approach for the synthesis of valuable chemicals and pharmaceuticals. Using sequential enzymes to construct a multienzyme complex is an effective way to enhance the overall performance of biosynthetic routes. Here we report the design of an efficient in vitro hybrid biocatalytic system by assembling three enzymes that can convert styrene to (S)-1-phenyl-1,2-ethanediol. Specifically, we prepared the three enzymes in different ways, which were cell surface-displayed, purified, and cell-free expressed. To assemble them, we fused two orthogonal peptide-protein pairs (i.e., SpyTag/SpyCatcher and SnoopTag/SnoopCatcher) to the three enzymes, allowing their spatial organization by covalent assembly. By doing this, we constructed a multienzyme complex, which could enhance the production of (S)-1-phenyl-1,2-ethanediol by 3 times compared to the free-floating enzyme system without assembly. After optimization of the reaction system, the final product yield reached 234.6 µM with a substrate conversion rate of 46.9% (based on 0.5 mM styrene). Taken together, our strategy integrates the merits of advanced biochemical engineering techniques, including cellular surface display, spatial enzyme organization, and cell-free expression, which offers a new solution for chemical biosynthesis by enzymatic cascade biotransformation. We, therefore, anticipate that our approach will hold great potential for designing and constructing highly efficient systems to synthesize chemicals of agricultural, industrial, and pharmaceutical significance.


Asunto(s)
Biocatálisis , Sistema Libre de Células , Estireno/metabolismo , Estireno/química , Escherichia coli/genética , Escherichia coli/metabolismo , Complejos Multienzimáticos/genética , Complejos Multienzimáticos/metabolismo
9.
Med Oncol ; 41(6): 163, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38777998

RESUMEN

Head and neck squamous cell carcinoma (HNSCC) can be defined as a deadly illness with a dismal prognosis in advanced stages. Therefore, we seek to examine P4HA2 expression and effect in HNSCC, along with the underlying mechanisms. This study utilized integrated bioinformatics analyses to evaluate the P4HA2 expression pattern, prognostic implication, and probable function in HNSCC. The study conducted various in vitro experiments, including colony formation, CCK-8, flow cytometry, wound healing, and transwell assays, on the human HNSCC cell line CAL-27 to examine the involvement of P4HA2 in HNSCC progression. Moreover, western blotting was used to investigate epithelial-mesenchymal transition (EMT) markers and PI3K/AKT pathway markers to elucidate the underlying mechanisms. P4HA2 expression was significantly enhanced in HNSCC, and its overexpression was correlated to tumor aggressiveness and a poor prognosis in patients. Based on in vitro experiments, the overexpressed P4HA2 enhanced cell proliferation, migration, invasion, as well as EMT while reducing apoptosis, whereas P4HA2 silencing exhibited the reverse effect. P4HA2 overexpression enhanced PI3K/AKT phosphorylation in HNSCC cells. Moreover, LY294002 was observed to counteract the effects of upregulated P4HA2 on proliferation, migration, invasion, and EMT in HNSCC. Collectively, we indicated that P4HA2 promoted HNSCC progression and EMT via PI3K/AKT signaling pathway.


Asunto(s)
Progresión de la Enfermedad , Transición Epitelial-Mesenquimal , Neoplasias de Cabeza y Cuello , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Carcinoma de Células Escamosas de Cabeza y Cuello , Femenino , Humanos , Masculino , Persona de Mediana Edad , Apoptosis , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular , Transición Epitelial-Mesenquimal/fisiología , Transición Epitelial-Mesenquimal/genética , Neoplasias de Cabeza y Cuello/patología , Neoplasias de Cabeza y Cuello/metabolismo , Neoplasias de Cabeza y Cuello/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Pronóstico , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/fisiología , Carcinoma de Células Escamosas de Cabeza y Cuello/patología , Carcinoma de Células Escamosas de Cabeza y Cuello/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/genética
10.
ACS Chem Neurosci ; 15(11): 2283-2295, 2024 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-38780450

RESUMEN

Oxidative stress and neuroinflammation in the aging brain are correlated with the development of neurodegenerative diseases, such as Alzheimer's disease (AD). The blood-brain barrier (BBB) poses a significant challenge to the effective delivery of therapeutics for AD. Prior research has demonstrated that menthol (Men) can augment the permeability of the BBB. Consequently, in the current study, we modified Men on the surface of liposomes to construct menthol-modified quercetin liposomes (Men-Qu-Lips), designed to cross the BBB and enhance quercetin (Qu) concentration in the brain for improved therapeutic efficacy. The experimental findings indicate that Men-Qu-Lips exhibited good encapsulation efficiency and stability, successfully crossed the BBB, improved oxidative stress and neuroinflammation in the brains of aged mice, protected neurons, and enhanced their learning and memory abilities.


Asunto(s)
Enfermedad de Alzheimer , Barrera Hematoencefálica , Encéfalo , Liposomas , Mentol , Quercetina , Quercetina/farmacología , Quercetina/administración & dosificación , Quercetina/química , Animales , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Ratones , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Mentol/farmacología , Mentol/administración & dosificación , Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/metabolismo , Masculino , Envejecimiento/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Ratones Endogámicos C57BL
11.
Transl Cancer Res ; 13(4): 1924-1935, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38737695

RESUMEN

Background: Papillary thyroid carcinoma (PTC) and follicular thyroid carcinoma (FTC) contribute to more than 95% of thyroid malignancies. However, synchronous PTC and FTC are less common; it is most commonly discovered incidentally as synchronous malignancies during operation, which adds difficulties to intraoperative decision-making and postoperative treatment. Therefore, we analyzed the clinicopathological characteristics and prognosis of patients with PTC and FTC in our center. Methods: We conducted a search of single PTC, single FTC, and synchronous PTC/FTC patients who received initial surgery treatment at Fudan University Shanghai Cancer Center from 2006 to 2018 and collected paraffin-embedded samples of synchronous patients. Clinicopathological characteristics were collected from the electronic medical record system. Follow-up was performed through telephone contact or medical records. Exome sequencing was performed by ThyroLead panel. Results: Total of 42 synchronous PTC/FTC patients, 244 single FTC patients, and 2,959 single PTC patients were included. It showed a similarity between the clinicopathological features of synchronous thyroid cancer patients and single PTC patients, with a greater proportion of females, higher probabilities of lymph node metastasis, and higher rate of concurrence of Hashimoto's disease. The disease-free survival (DFS) curve indicated a worse prognosis of the synchronous group and single PTC group compared to the single FTC group, who had a propensity for neck lymph node recurrence; however, logistic multivariate regression analysis did not find any factor related to recurrence in the synchronous group. After re-checking pathology, DNA extraction, and quality control, genetic alteration information of 62 samples including primary tumors and metastatic lymph nodes from 35 synchronous cancer patients was displayed. In total, 81 mutations and 1 fusion gene were identified, including mutations related to outcomes and targeted therapy. Besides, some rare mutations in thyroid cancer were found in these patients. Conclusions: To conclude, synchronous PTC/FTC tend to be incidentally discovered during or after operation, behaving more like single PTC. The prognosis of synchronous patients is worse than that of single FTC patients and supplemental cervical lymph node dissection, total thyroidectomy, and postoperative radioiodine therapy should be taken into consideration after diagnosis. The next-generation sequencing (NGS) showed a unique molecular feature of synchronous patients with some rare mutations.

12.
Surgery ; 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38811326

RESUMEN

BACKGROUND: Emodin, a natural anthraquinone derivative found in various Chinese medicinal herbs, has been proved to be an effective therapeutic agent in the treatment of many diseases. However, its effect on lung injury after intestinal ischemia/reperfusion injury remains unknown. This research was designed to investigate whether emodin protects against intestinal ischemia/reperfusion-induced lung injury and to elucidate the underlying molecular mechanisms in vivo and in vitro. METHODS: Intestinal ischemia/reperfusion injury was induced by occluding the superior mesenteric artery in mice, and mouse lung epithelial-12 cells were subjected to oxygen-glucose deprivation and reoxygenation to establish an in vitro model. RESULTS: Our data indicated that emodin treatment reduced intestinal ischemia/reperfusion-induced oxidative stress, inflammation and apoptosis in lung tissues and alleviated lung injury. However, the protective effects of emodin on intestinal ischemia/reperfusion-induced lung injury were reversed by the protein kinase B inhibitor triciribine or the heme oxygenase-1 inhibitor tin protoporphyrin IX. The protein kinase inhibitor triciribine also downregulated the expression of heme oxygenase-1. CONCLUSION: In conclusion, our data suggest that emodin treatment protects against intestinal ischemia/reperfusion-induced lung injury by enhancing heme oxygenase-1 expression via activation of the PI3K/protein kinase pathway. Emodin may act as a potential therapeutic agent for the prevention and treatment of lung injury induced by intestinal ischemia/reperfusion.

13.
Adv Sci (Weinh) ; : e2309992, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38774946

RESUMEN

Radiotherapy demonstrates a synergistic effect with immunotherapy by inducing a transformation of "immune cold" tumors into "immune hot" tumors in triple negative breast cancer (TNBC). Nevertheless, the effectiveness of immunotherapy is constrained by low expression of tumor-exposed antigens, inadequate inflammation, and insufficient tumor infiltrating lymphocyte (TILs). To address this predicament, novel lutecium-based rare earth nanoparticles (RENPs) are synthesized with the aim of amplifying radiation effect and tumor immune response. The nanoprobe is characterized by neodymium-based down-conversion fluorescence, demonstrating robust photostability, biocompatibility, and targetability. The conjugation of RENPs with a CXCR4 targeted drug enables precise delineation of breast tumors using a near-infrared imaging system and improves radiation efficacy via lutetium-based radio-sensitizer in vivo. Furthermore, the study shows a notable enhancement of immune response through the induction of immunogenic cell death and recruitment of TILs, resulting in the inhibition of tumor progression both in vitro and in vivo models following the administration of nanoparticles. Hence, the novel multifunctional nanoprobes incorporating various lanthanide elements offer the potential for imaging-guided tumor delineation, radio-sensitization, and immune activation post-radiation, thus presenting an efficient radio-immunotherapeutic approach for TNBC.

14.
Nat Commun ; 15(1): 4336, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773100

RESUMEN

Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a major class of natural products with diverse chemical structures and potent biological activities. A vast majority of RiPP gene clusters remain unexplored in microbial genomes, which is partially due to the lack of rapid and efficient heterologous expression systems for RiPP characterization and biosynthesis. Here, we report a unified biocatalysis (UniBioCat) system based on cell-free gene expression for rapid biosynthesis and engineering of RiPPs. We demonstrate UniBioCat by reconstituting a full biosynthetic pathway for de novo biosynthesis of salivaricin B, a lanthipeptide RiPP. Next, we delete several protease/peptidase genes from the source strain to enhance the performance of UniBioCat, which then can synthesize and screen salivaricin B variants with enhanced antimicrobial activity. Finally, we show that UniBioCat is generalizable by synthesizing and evaluating the bioactivity of ten uncharacterized lanthipeptides. We expect UniBioCat to accelerate the discovery, characterization, and synthesis of RiPPs.


Asunto(s)
Sistema Libre de Células , Procesamiento Proteico-Postraduccional , Ribosomas , Ribosomas/metabolismo , Ribosomas/genética , Péptidos/metabolismo , Péptidos/genética , Péptidos/química , Vías Biosintéticas/genética , Familia de Multigenes , Biocatálisis
15.
Front Plant Sci ; 15: 1393663, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38817934

RESUMEN

Cabomba caroliniana A. Gray, an ornamental submerged plant indigenous to tropical America, has been introduced to numerous countries in Europe, Asia, and Oceania, impacting native aquatic ecosystems. Given this species is a popular aquarium plant and widely traded, there is a high risk of introduction and invasion into other environments. In the current study the potential global geographic distribution of C. caroliniana was predicted under the effects of climate change and human influence in an optimised MaxEnt model. The model used rigorously screened occurrence records of C. caroliniana from hydro informatic datasets and 20 associated influencing factors. The findings indicate that temperature and human-mediated activities significantly influenced the distribution of C. caroliniana. At present, C. caroliniana covers an area of approximately 1531×104 km2 of appropriate habitat, especially in the south-eastern parts of South, central and North America, Southeast Asia, eastern Australia, and most of Europe. The suitable regions are anticipated to expand under future climate scenarios; however, the dynamics of the changes vary between different extents of climate change. For example, C. caroliniana is expected to expand to higher latitudes, following global temperature increases under SSP1-2.6 and SSP2-4.5 scenarios, however, intolerance to temperature extremes may mediate invasion at higher latitudes under future extreme climate scenarios, e.g., SSP5-8.5. Owing to the severe impacts its invasion causes, early warning and stringent border quarantine processes are required to guard against the introduction of C. caroliniana especially in the invasion hotspots such as, Peru, Italy, and South Korea.

16.
World J Gastrointest Oncol ; 16(5): 1808-1820, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38764811

RESUMEN

BACKGROUND: Vessels encapsulating tumor clusters (VETC) represent a recently discovered vascular pattern associated with novel metastasis mechanisms in hepatocellular carcinoma (HCC). However, it seems that no one have focused on predicting VETC status in small HCC (sHCC). This study aimed to develop a new nomogram for predicting VETC positivity using preoperative clinical data and image features in sHCC (≤ 3 cm) patients. AIM: To construct a nomogram that combines preoperative clinical parameters and image features to predict patterns of VETC and evaluate the prognosis of sHCC patients. METHODS: A total of 309 patients with sHCC, who underwent segmental resection and had their VETC status confirmed, were included in the study. These patients were recruited from three different hospitals: Hospital 1 contributed 177 patients for the training set, Hospital 2 provided 78 patients for the test set, and Hospital 3 provided 54 patients for the validation set. Independent predictors of VETC were identified through univariate and multivariate logistic analyses. These independent predictors were then used to construct a VETC prediction model for sHCC. The model's performance was evaluated using the area under the curve (AUC), calibration curve, and clinical decision curve. Additionally, Kaplan-Meier survival analysis was performed to confirm whether the predicted VETC status by the model is associated with early recurrence, just as it is with the actual VETC status and early recurrence. RESULTS: Alpha-fetoprotein_lg10, carbohydrate antigen 199, irregular shape, non-smooth margin, and arterial peritumoral enhancement were identified as independent predictors of VETC. The model incorporating these predictors demonstrated strong predictive performance. The AUC was 0.811 for the training set, 0.800 for the test set, and 0.791 for the validation set. The calibration curve indicated that the predicted probability was consistent with the actual VETC status in all three sets. Furthermore, the decision curve analysis demonstrated the clinical benefits of our model for patients with sHCC. Finally, early recurrence was more likely to occur in the VETC-positive group compared to the VETC-negative group, regardless of whether considering the actual or predicted VETC status. CONCLUSION: Our novel prediction model demonstrates strong performance in predicting VETC positivity in sHCC (≤ 3 cm) patients, and it holds potential for predicting early recurrence. This model equips clinicians with valuable information to make informed clinical treatment decisions.

17.
Angew Chem Int Ed Engl ; 63(27): e202402497, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38679571

RESUMEN

The large size of K-ion makes the pursuit of stable high-capacity anodes for K-ion batteries (KIBs) a formidable challenge, particularly for high temperature KIBs as the electrode instability becomes more aggravated with temperature climbing. Herein, we demonstrate that a hollow ZnS@C nanocomposite (h-ZnS@C) with a precise shell modulation can resist electrode disintegration to enable stable high-capacity potassium storage at room and high temperature. Based on a model electrode, we identify an interesting structure-function correlation of the h-ZnS@C: with an increase in the shell thickness, the cyclability increases while the rate and capacity decrease, shedding light on the design of high-performance h-ZnS@C anodes via engineering the shell thickness. Typically, the h-ZnS@C anode with a shell thickness of 60 nm can deliver an impressive comprehensive performance at room temperature; the h-ZnS@C with shell thickness increasing to 75 nm can achieve an extraordinary stability (88.6 % capacity retention over 450 cycles) with a high capacity (450 mAh g-1) and a superb rate even at an extreme temperature of 60 °C, which is much superior than those reported anodes. This contribution envisions new perspectives on rational design of functional metal sulfides composite toward high-performance KIBs with insights into the significant structure-function correlation.

18.
Brain Res Bull ; 212: 110968, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38679110

RESUMEN

BACKGROUND: Despite regional brain structural changes having been reported in patients with chronic low back pain (CLBP), the topological properties of structural covariance networks (SCNs), which refer to the organization of the SCNs, remain unclear. This study applied graph theoretical analysis to explore the alterations of the topological properties of SCNs, aiming to comprehend the integration and separation of SCNs in patients with CLBP. METHODS: A total of 38 patients with CLBP and 38 healthy controls (HCs), balanced for age and sex, were scanned using three-dimensional T1-weighted magnetic resonance imaging. The cortical thickness was extracted from 68 brain regions, according to the Desikan-Killiany atlas, and used to reconstruct the SCNs. Subsequently, graph theoretical analysis was employed to evaluate the alterations of the topological properties in the SCNs of patients with CLBP. RESULTS: In comparison to HCs, patients with CLBP had less cortical thickness in the left superior frontal cortex. Additionally, the cortical thickness of the left superior frontal cortex was negatively correlated with the Visual Analogue Scale scores of patients with CLBP. Furthermore, patients with CLBP, relative to HCs, exhibited lower global efficiency and small-worldness, as well as a longer characteristic path length. This indicates a decline in the brain's capacity to transmit and process information, potentially impacting the processing of pain signals in patients with CLBP and contributing to the development of CLBP. In contrast, there were no significant differences in the clustering coefficient, local efficiency, nodal efficiency, nodal betweenness centrality, or nodal degree between the two groups. CONCLUSIONS: From the regional cortical thickness to the complex brain network level, our study demonstrated changes in the cortical thickness and topological properties of the SCNs in patients with CLBP, thus aiding in a better understanding of the pathophysiological mechanisms of CLBP.


Asunto(s)
Corteza Cerebral , Dolor Crónico , Dolor de la Región Lumbar , Imagen por Resonancia Magnética , Humanos , Femenino , Masculino , Dolor de la Región Lumbar/diagnóstico por imagen , Dolor de la Región Lumbar/patología , Adulto , Imagen por Resonancia Magnética/métodos , Persona de Mediana Edad , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/patología , Dolor Crónico/diagnóstico por imagen , Dolor Crónico/patología , Red Nerviosa/diagnóstico por imagen , Red Nerviosa/patología
19.
Biotechnol J ; 19(4): e2400114, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38622790

RESUMEN

Molecular cloning facilitates the assembly of heterologous DNA fragments with vectors, resulting in the generation of plasmids that can steadily replicate in host cells. To efficiently and accurately screen out the expected plasmid candidates, various methods, such as blue-white screening, have been developed for visualization. However, these methods typically require additional genetic manipulations and costs. To simplify the process of visualized molecular cloning, here we report Rainbow Screening, a method that combines Gibson Assembly with chromoproteins to distinguish Escherichia coli (E. coli) colonies by naked eyes, eliminating the need for additional genetic manipulations or costs. To illustrate the design, we select both E. coli 16s rRNA and sfGFP expression module as two inserted fragments. Using Rainbow Screening, false positive colonies can be easily distinguished on LB-agar plates. Moreover, both the assembly efficiency and the construct accuracy can exceed 80%. We anticipate that Rainbow Screening will enrich the molecular cloning methodology and expand the application of chromoproteins in biotechnology and synthetic biology.


Asunto(s)
ADN , Escherichia coli , Escherichia coli/genética , ARN Ribosómico 16S , Clonación Molecular , Plásmidos , ADN/genética , Vectores Genéticos
20.
Cytokine ; 179: 156623, 2024 07.
Artículo en Inglés | MEDLINE | ID: mdl-38685155

RESUMEN

Systemic lupus erythematosus (SLE) is a connective tissue disorder that affects various body systems. Both the innate and adaptive immunity contribute to the onset and progression of SLE. The main mechanism of SLE is an excessive immune response of immune cells to autoantigens, which leads to systemic inflammation and inflammation-induced organ damage. Notably, a subset of innate immune cells known as innate lymphoid cells (ILCs) has recently emerged. ILCs are pivotal in the early stages of infection; participate in immune responses, inflammation, and tissue repair; and regulate the immune function of the body by resisting pathogens and regulating autoimmune inflammation and metabolic homeostasis. Thus, ILCs dysfunction can lead to autoimmune diseases. This review discusses the maturation of ILCs, the potential mechanisms by which ILCs exacerbate SLE pathogenesis, and their contributions to organ inflammatory deterioration in SLE.


Asunto(s)
Inmunidad Innata , Lupus Eritematoso Sistémico , Linfocitos , Animales , Humanos , Inmunidad Innata/inmunología , Inflamación/inmunología , Inflamación/patología , Lupus Eritematoso Sistémico/inmunología , Linfocitos/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...