Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Bioorg Chem ; 148: 107460, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38781668

RESUMEN

A series of genipin derivatives were designed and synthesized as potential inhibitors targeted KRAS G12D mutation. The majority of these compounds demonstrated potential antiproliferative effects against KRAS G12D mutant tumor cells (CT26 and A427). Notably, seven compounds exhibited the anticancer effects with IC50 values ranging from 7.06 to 9.21 µM in CT26 (KRASG12D) and A427 (KRASG12D) cells and effectively suppressed the colony formation of CT26 cells. One representative compound SK12 was selected for further investigation into biological activity and action mechanisms. SK12 markedly induced apoptosis in CT26 cells in a concentration-dependent manner. Moreover, SK12 elevated the levels of reactive oxygen species (ROS) in tumor cells and exhibited a modulatory effect on the KRAS signaling pathway, thereby inhibiting the activation of downstream phosphorylated proteins. The binding affinity of SK12 to KRAS G12D protein was further confirmed by the surface plasmon resonance (SPR) assay with a binding KD of 157 µM. SK12 also exhibited notable anticancer efficacy in a nude mice tumor model. The relative tumor proliferation rate (T/C) of the experimental group (50 mg/kg) was 31.04 % (P < 0.05), while maintaining a commendable safety profile.


Asunto(s)
Antineoplásicos , Proliferación Celular , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Iridoides , Ratones Desnudos , Proteínas Proto-Oncogénicas p21(ras) , Humanos , Iridoides/farmacología , Iridoides/química , Animales , Proteínas Proto-Oncogénicas p21(ras)/antagonistas & inhibidores , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Proliferación Celular/efectos de los fármacos , Relación Estructura-Actividad , Ratones , Estructura Molecular , Apoptosis/efectos de los fármacos , Descubrimiento de Drogas , Línea Celular Tumoral , Mutación , Ratones Endogámicos BALB C , Neoplasias Experimentales/tratamiento farmacológico , Neoplasias Experimentales/patología , Neoplasias Experimentales/metabolismo
2.
Eur J Med Chem ; 266: 116108, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38218125

RESUMEN

Neuronal regenerative ability is vital for the treatment of neurodegenerative diseases and neuronal injuries. Recent studies have revealed that Ganglioside GM3 and its derivatives may possess potential neuroprotective and neurite growth-promoting activities. Herein, six GM3 derivatives were synthesized and evaluated their potential neuroprotective effects and neurite outgrowth-promoting activities on a cellular model of Parkinson's disease and primary nerve cells. Amongst these derivatives, derivatives N-14 and 2C-12 demonstrated neuroprotective effects in the MPP + model in SH-SY5Y cells. 2C-12 combined with NGF (nerve growth factor) induced effecially neurite growth in primary nerve cells. Further action mechanism revealed that derivative 2C-12 exerts neuroprotective effects by regulating the Wnt signaling pathway, specifically involving the Wnt7b gene. Overall, this study establishes a foundation for further exploration and development of GM3 derivatives with neurotherapeutic potential.


Asunto(s)
Neuroblastoma , Fármacos Neuroprotectores , Ratas , Animales , Humanos , Neuritas , Gangliósido G(M3)/farmacología , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/metabolismo , Células PC12 , Neuroblastoma/metabolismo
3.
Proc Natl Acad Sci U S A ; 121(6): e2317247121, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38294936

RESUMEN

Oxygen evolution reaction (OER) is the pivotal obstacle of water splitting for hydrogen production. Dual-sites catalysts (DSCs) are considered exceeding single-site catalysts due to the preternatural synergetic effects of two metals in OER. However, appointing the specific spatial configuration of dual-sites toward more efficient catalysis still remains a challenge. Herein, we constructed two configurations of Fe-Co dual-sites: stereo Fe-Co sites (stereo-Fe-Co DSC) and planar Fe-Co sites (planar-Fe-Co DSC). Remarkably, the planar-Fe-Co DSC has excellent OER performance superior to stereo-Fe-Co DSC. DFT calculations and experiments including isotope differential electrochemical mass spectrometry, in situ infrared spectroscopy, and in situ Raman reveal the *O intermediates can be directly coupled to form *O-O* rather than *OOH by both the DSCs, which could overcome the limitation of four electron transfer steps in OER. Especially, the proper Fe-Co distance and steric direction of the planar-Fe-Co benefit the cooperation of dual sites to dehydrogenate intermediates into *O-O* than stereo-Fe-Co in the rate-determining step. This work provides valuable insights and support for further research and development of OER dual-site catalysts.

4.
Nano Lett ; 23(23): 11368-11375, 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38047597

RESUMEN

The design of catalysts has attracted a great deal of attention in the field of electrocatalysis. The accurate design of the catalysts can avoid an unnecessary process that occurs during the blind trial. Based on the interaction between different metal species, a metallic compound supported by the carbon nanotube was designed. Among these compounds, RhFeP2CX (R-RhFeP2CX-CNT) was found to be in a rich-electron environment at the Fermi level (denoted as a flat Fermi surface), beneficial to the hydrogen evolution reaction (HER). R-RhFeP2CX-CNT exhibits a small overpotential of 15 mV at the current density of 10 mA·cm-2 in acidic media. Moreover, the mass activity of R-RhFeP2CX-CNT is 21597 A·g-1, which also demonstrates the advance of the active sites on R-RhFeP2CX-CNT. Therefore, R-RhFeP2CX-CNT can be an alternative catalyst applied in practical production, and the strategies of a flat Fermi surface will be a reliable strategy for catalyst designing.

5.
Genes Dis ; 10(4): 1429-1444, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37397521

RESUMEN

DNA is highly vulnerable to spontaneous and environmental timely damage in living cells. DNA damage may cause genetic instability and increase cancer risk if the damages are not repaired timely and efficiently. Human cells possess several DNA damage response (DDR) mechanisms to protect the integrity of their genome. Clarification of the mechanisms underlying the DNA damage response following lethal damage will facilitate the identification of therapeutic targets for cancers. Histone post-translational modifications (PTMs) have been indicated to play different roles in the repair of DNA damage. In this context, histone PTMs regulate recruitment of downstream effectors, and facilitate appropriate repair response. This review outlines the current understanding of different histone PTMs in response to DNA damage repair, besides, enumerates the role of new type PTMs such as histone succinylation and crotonylation in regulating DNA damage repair processes.

6.
Cell Death Discov ; 9(1): 205, 2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37391451

RESUMEN

The failure of melanoma immunotherapy can be mediated by immunosuppression in the tumor microenvironment (TME), and insufficient activation of effector T cells against the tumor. Here, we show that inhibition of galectin-3 (gal-3) enhances the infiltration of T cells in TME and improves the sensitivity of anti-PD-L1 therapy. We identify that RNF8 downregulated the expression of gal-3 by K48-polyubiquitination and promoted gal-3 degradation via the ubiquitin-proteasome system. RNF8 deficiency in the host but sufficiency in implanted melanoma results in immune exclusion and tumor progression due to the upregulation of gal-3. Upregulation of gal-3 decreased the immune cell infiltration by restricting IL-12 and IFN-γ. Inhibition of gal-3 reverses immunosuppression and induces immune cell infiltration in the tumor microenvironment. Moreover, gal-3 inhibitor treatment can increase the sensitivity of PD-L1 inhibitors via increasing immune cell infiltration and enhancing immune response in tumors. This study reveals a previously unrecognized immunoregulation function of RNF8 and provides a promising strategy for the therapy of "cold" tumors. Tremendous effects of melanoma treatment can be achieved by facilitating immune cell infiltration combined with anti-PD-L1 treatment.

7.
Int J Mol Sci ; 24(10)2023 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-37240164

RESUMEN

Male infertility is a global issue that seriously affects reproductive health. This study aimed to understand the underlying causes of idiopathic non-obstructive azoospermia (iNOA), which is a type of male infertility with unknown origins that accounts for 10-15% of cases. By using single-cell analysis techniques, we aimed to uncover the mechanisms of iNOA and gain insight into the cellular and molecular changes in the testicular environment. In this study, we performed bioinformatics analysis using scRNA-seq and microarray data obtained from the GEO database. The analysis included techniques such as pseudotime analysis, cell-cell communication, and hdWGCNA. Our study showed a significant difference between the iNOA and the normal groups, indicating a disorder in the spermatogenic microenvironment in iNOA. We observed a reduction in the proportion of Sertoli cells and blocked germ cell differentiation. Additionally, we found evidence of testicular inflammation related to macrophages and identified ODF2 and CABYR as potential biomarkers for iNOA.


Asunto(s)
Azoospermia , Infertilidad Masculina , Orquitis , Humanos , Masculino , Azoospermia/genética , Testículo , Espermatogénesis , Inflamación , Análisis de la Célula Individual , Proteínas de Choque Térmico
8.
Nano Lett ; 23(6): 2312-2320, 2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36861218

RESUMEN

Positively charged Cu sites have been confirmed to significantly promote the production of multicarbon (C2) products from an electrochemical CO2 reduction reaction (CO2RR). However, the positively charged Cu has difficulty in existing under a strong negative bias. In this work, we design a Pdδ--Cu3N catalyst containing charge-separated Pdδ--Cuδ+ atom pair that can stabilize the Cuδ+ sites. In situ characterizations and density functional theory reveal that the first reported negatively charged Pdδ- sites exhibited a superior CO binding capacity together with the adjacent Cuδ+ sites, synergistically promoting the CO dimerization process to produce C2 products. As a result, we achieve a 14-fold increase in the C2 product Faradaic efficiency (FE) on Pdδ--Cu3N, from 5.6% to 78.2%. This work provides a new strategy for synthesizing negative valence atom-pair catalysts and an atomic-level modulation approach of unstable Cuδ+ sites in the CO2RR.

9.
J Cancer Res Clin Oncol ; 149(9): 6315-6328, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36745223

RESUMEN

PURPOSES: Increased number of studies reveal the crucial role of the Cyclic GMP-AMP synthase/stimulator of interferon genes (cGAS/STING) pathway in anti-tumor immunity. In this study, we aim to explore the effect of cGAS/STING on tumor immune microenvironment of melanoma after carbon ion radiotherapy (CIRT) and the underlying mechanism. METHODS: C57BL/6 mouse tumor models were used to evaluate the efficacy of different treatments (X-ray, carbon ion, PD-L1 inhibitor and combination therapies) on tumor growth and process. Mass cytometry was performed to assess tumor-infiltrating lymphocytes (TILs). DNA damage response (DDR) and cGAS/STING pathway were investigated by immunofluorescence-co-localization assays, γ-H2AX, P53-binding protein 1 (53BP1), Breast Cancer 1 (BRCA1), and cGAS measurements. RESULTS: Carbon ion irradiation caused more DNA damages and cGAS-STING pathway activation compared with X-ray irradiation, and the former slowed the melanoma growth in syngeneic model. Although X-ray irradiation is not sensitive for melanoma treatment, carbon ion irradiation showed a significant anti-tumor effect for melanoma treatment. TILs analysis revealed that CIRT boosted the infiltration of natural killer (NK), CD4+, and CD8+ T cells, meanwhile increased the number of immune checkpoint (programmed death-1, PD-1, lymphocyte activation gene 3, LAG-3 and T-cell immunoglobulin and mucin domain-containing protein 3, TIM-3). Moreover, CIRT increased PD-L1 exposure on cell surface compared with X-ray group. Furthermore, CIRT combined with PD-L1 inhibitor therapy increased the number of T cells and NK cells in melanoma, and slowed the growth of melanoma compared with other therapies. CONCLUSIONS: Our findings showed that CIRT displayed biological effects by increasing DNA damages of tumor cells and improving immunity in melanoma, which indicated that CIRT might be a potential synergetic treatment for radiotherapy and radioimmunotherapy in melanoma patients. Our works put forward a new insight to provide an effective strategy for melanoma therapy. These findings may help in the design of strategies on melanoma in clinical studies.


Asunto(s)
Radioterapia de Iones Pesados , Melanoma , Animales , Ratones , Linfocitos T CD8-positivos , Microambiente Tumoral , Inhibidores de Puntos de Control Inmunológico , Ratones Endogámicos C57BL , Melanoma/genética , Melanoma/radioterapia , Melanoma/metabolismo , Nucleotidiltransferasas/genética , Nucleotidiltransferasas/metabolismo , Daño del ADN
10.
J Am Chem Soc ; 145(8): 4819-4827, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36790150

RESUMEN

Heterogeneous catalysts containing diatomic sites are often hypothesized to have distinctive reactivity due to synergistic effects, but there are limited approaches that enable the convenient production of diatomic catalysts (DACs) with diverse metal combinations. Here, we present a general synthetic strategy for constructing a DAC library across a wide spectrum of homonuclear (Fe2, Co2, Ni2, Cu2, Mn2, and Pd2) and heteronuclear (Fe-Cu, Fe-Ni, Cu-Mn, and Cu-Co) bimetal centers. This strategy is based on an encapsulation-pyrolysis approach, wherein a porous material-encapsulated macrocyclic complex mediates the structure of DACs by preserving the main body of the molecular framework during pyrolysis. We take the oxygen reduction reaction (ORR) as an example to show that this DAC library can provide great opportunities for electrocatalyst development by unlocking an unconventional reaction pathway. Among all investigated sites, Fe-Cu diatomic sites possess exceptional high durability for ORR because the Fe-Cu pairs can steer elementary steps in the catalytic cycle and suppress the troublesome Fenton-like reactions.

11.
Adv Sci (Weinh) ; 9(17): e2105599, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35514057

RESUMEN

In bimetallic heterostructured nanoparticles (NPs), the synergistic effect between their different metallic components leads to higher catalytic activity compared to the activity of the individual components. However, how the dynamic changes through which these NPs adopt catalytically active structures during a reaction and how the restructuring affects their activity are largely unknown. Here, using operando transmission electron microscopy, structural changes are studied in bimetallic Ni-Rh NPs, comprising of a Ni core whose surface is decorated with smaller Rh NPs, during a CO oxidation reaction. The direct atomic-scale imaging reveals that, under O2 -rich conditions, Ni core partially transforms into NiO, forming a (Ni+NiO)-Rh hollow nanocatalyst with high catalytic activity. Under O2 -poor conditions, Rh NPs alloy with the surface of the core to form a NiRh-alloy surface, and the NPs display significantly lower activity. The theoretical calculations indicate that NiO component that forms only under O2 -rich conditions enhances the activity by preventing the CO poisoning of the nanocatalysts. The results demonstrate that visualizing the structural changes during reactions is indispensable in identifying the origin of catalytic activity. These insights into the dynamic restructuring of NP catalysts under a reactive environment are critical for the rational design of high-performance nanocatalysts.

12.
Environ Pollut ; 300: 118986, 2022 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-35167931

RESUMEN

The environmental pollution from microplastics has caused concern from the whole society due to its harm to organisms. However, the effect of microplastics on liver damage and fibrosis remains unclear in the case of long-term accumulation. The present study demonstrated that the 0.1 µm microplastic could enter hepatocytes from circulation and result liver damage even at a low concentration. Microplastic exposure could induce DNA damage in both nucleus and mitochondria, by which the dsDNA fragment was translocated into cytoplasm and triggered the DNA sensing adaptor STING. The activation of cGAS/STING pathway initiated the downstream cascade reaction, the NFκB translocated into nucleus and upregulated pro-inflammatory cytokines expression, and thus facilitating liver fibrosis eventually. Furthermore, inhibition of STING could alleviate the liver fibrosis via blocking the NFκB translocation and fibronectin expression. This study provided a valuable insight to elucidate the potential risk and mechanism of hepatic toxicity and fibrosis induced by microplastics.


Asunto(s)
Microplásticos , Poliestirenos , Humanos , Cirrosis Hepática/inducido químicamente , Microplásticos/toxicidad , Nucleotidiltransferasas/genética , Nucleotidiltransferasas/metabolismo , Plásticos/toxicidad , Poliestirenos/toxicidad
13.
Diabetes Metab J ; 46(1): 93-103, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34465016

RESUMEN

BACKGROUND: Both type 1 diabetes mellitus (T1DM) and metabolic syndrome (MetS) are associated with an elevated risk of morbidity and mortality yet with increasing heterogeneity. This study primarily aimed to evaluate the prevalence of MetS among adult patients with T1DM in China and investigate its associated risk factors, and relationship with microvascular complications. METHODS: We included adult patients who had been enrolled in the Guangdong T1DM Translational Medicine Study conducted from June 2010 to June 2015. MetS was defined according to the updated National Cholesterol Education Program criterion. Logistic regression models were used to estimate the odds ratio (OR) for the association between MetS and the risk of diabetic kidney disease (DKD) and diabetic retinopathy (DR). RESULTS: Among the 569 eligible patients enrolled, the prevalence of MetS was 15.1%. While female gender, longer diabetes duration, higher body mass index, and glycosylated hemoglobin A1c (HbA1c) were risk factors associated with MetS (OR, 2.86, 1.04, 1.14, and 1.23, respectively), received nutrition therapy education was a protective factor (OR, 0.46). After adjustment for gender, age, diabetes duration, HbA1c, socioeconomic and lifestyle variables, MetS status was associated with an increased risk of DKD and DR (OR, 2.14 and 3.72, respectively; both P<0.05). CONCLUSION: Although the prevalence of MetS in adult patients with T1DM in China was relatively low, patients with MetS were more likely to have DKD and DR. A comprehensive management including lifestyle modification might reduce their risk of microvascular complications in adults with T1DM.


Asunto(s)
Diabetes Mellitus Tipo 1 , Nefropatías Diabéticas , Retinopatía Diabética , Síndrome Metabólico , Adulto , Diabetes Mellitus Tipo 1/complicaciones , Diabetes Mellitus Tipo 1/epidemiología , Nefropatías Diabéticas/epidemiología , Retinopatía Diabética/complicaciones , Retinopatía Diabética/epidemiología , Femenino , Hemoglobina Glucada/análisis , Humanos , Masculino , Síndrome Metabólico/complicaciones , Síndrome Metabólico/epidemiología
14.
Neuroscience ; 480: 19-31, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34774969

RESUMEN

RAD6B is an E2 ubiquitin-conjugating enzyme, playing an important role in DNA damage repair, gene expression, senescence, apoptosis and protein degradation. However, the specific mechanism between ubiquitin and retinal degeneration requires more investigation. Pigment epithelium-derived factor (PEDF) has a potent neurotrophic effect on the retina, protecting retinal neurons and photoreceptors from cell death caused by pathological damage. In this study, we found that loss of RAD6B leads to retinal degeneration in mice, especially in old age. Affymetrix microarray analysis showed that the PEDF signal was changed in RAD6B deficient groups. The expression of γ-H2AX, ß-Gal, P53, Caspase-3, P21 and P16 was increased significantly in retinas of RAD6B knockout (KO) mice. Our studies suggest that RAD6B and PEDF play an important role in the health of retina, whereas the absence of RAD6B accelerates the degeneration.


Asunto(s)
Degeneración Retiniana , Serpinas , Animales , Proteínas del Ojo/genética , Ratones , Factores de Crecimiento Nervioso/genética , Retina , Serpinas/genética
15.
Proc Natl Acad Sci U S A ; 118(10)2021 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-33649204

RESUMEN

Metal-organic frameworks (MOFs) are crystalline nanoporous materials with great potential for a wide range of industrial applications. Understanding the nucleation and early growth stages of these materials from a solution is critical for their design and synthesis. Despite their importance, the pathways through which MOFs nucleate are largely unknown. Using a combination of in situ liquid-phase and cryogenic transmission electron microscopy, we show that zeolitic imidazolate framework-8 MOF nanocrystals nucleate from precursor solution via three distinct steps: 1) liquid-liquid phase separation into solute-rich and solute-poor regions, followed by 2) direct condensation of the solute-rich region into an amorphous aggregate and 3) crystallization of the aggregate into a MOF. The three-step pathway for MOF nucleation shown here cannot be accounted for by conventional nucleation models and provides direct evidence for the nonclassical nucleation pathways in open-framework materials, suggesting that a solute-rich phase is a common precursor for crystallization from a solution.

16.
Biochem Biophys Res Commun ; 531(3): 402-408, 2020 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-32868078

RESUMEN

Presbycusis is a form of age-related hearing loss (AHL). Many studies have shown that the degeneration of various structures in the cochlea of the inner ear is related to AHL, and DNA damage is an important factor leading to the above process. As an E2 ubiquitin-conjugated enzyme, RAD6B plays an important role in DNA damage repair (DDR) through histone ubiquitination. However, the molecular mechanism is still unclear. In this study, we investigated the role of RAD6B in the morphological changes and DDR mechanisms in aging-related degeneration of the cochlea of mice. We observed that the hair cells, stria vascularis and spiral ganglion in the cochlea of the RAD6B knockout mice showed significant degenerative changes and abnormal expression of proteins associated with DDR mechanisms compared with those of the littermate wild-type mice. In conclusion, our results suggest that the deletion of RAD6B may lead to abnormalities in DDR, thereby accelerating the degeneration of various structures in the cochlea and senescence and apoptosis of cochlea cells.


Asunto(s)
Envejecimiento/patología , Cóclea/metabolismo , Cóclea/patología , Enzimas Ubiquitina-Conjugadoras/deficiencia , Animales , Apoptosis , Caspasa 3/metabolismo , Línea Celular , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Daño del ADN , Reparación del ADN , Histonas/metabolismo , Ratones Noqueados , Proteína p53 Supresora de Tumor/metabolismo , Enzimas Ubiquitina-Conjugadoras/metabolismo
17.
BMC Med Inform Decis Mak ; 20(1): 68, 2020 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-32293428

RESUMEN

BACKGROUND: Drug label, or packaging insert play a significant role in all the operations from production through drug distribution channels to the end consumer. Image of the label also called Display Panel or label could be used to identify illegal, illicit, unapproved and potentially dangerous drugs. Due to the time-consuming process and high labor cost of investigation, an artificial intelligence-based deep learning model is necessary for fast and accurate identification of the drugs. METHODS: In addition to image-based identification technology, we take advantages of rich text information on the pharmaceutical package insert of drug label images. In this study, we developed the Drug Label Identification through Image and Text embedding model (DLI-IT) to model text-based patterns of historical data for detection of suspicious drugs. In DLI-IT, we first trained a Connectionist Text Proposal Network (CTPN) to crop the raw image into sub-images based on the text. The texts from the cropped sub-images are recognized independently through the Tesseract OCR Engine and combined as one document for each raw image. Finally, we applied universal sentence embedding to transform these documents into vectors and find the most similar reference images to the test image through the cosine similarity. RESULTS: We trained the DLI-IT model on 1749 opioid and 2365 non-opioid drug label images. The model was then tested on 300 external opioid drug label images, the result demonstrated our model achieves up-to 88% of the precision in drug label identification, which outperforms previous image-based or text-based identification method by up-to 35% improvement. CONCLUSION: To conclude, by combining Image and Text embedding analysis under deep learning framework, our DLI-IT approach achieved a competitive performance in advancing drug label identification.


Asunto(s)
Aprendizaje Profundo , Preparaciones Farmacéuticas , Inteligencia Artificial
18.
Front Cell Neurosci ; 13: 392, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31507381

RESUMEN

RAD6 participates in DNA double-strand breaks (DSBs) repair by ubiquitinating histone H2B in mitotic cells. In terminally differentiated cells, however, the mechanisms of DNA damage repair are less well known. In this study, we investigate whether RAD6B is involved in DSBs repair in neurons and effects of RAD6B deficiency on neuronal survival. We compared neurons of RAD6B-deficient mice with those of littermate wild type (WT) mice and induced DNA damage by X-ray irradiation. We provide evidence that RAD6B is essential for neural DDR and RAD6B deficiency results in increased genomic instability and neurodegeneration. Moreover, higher levels of p53 and p21 are present in the brains of RAD6B-deficient mice, which may be responsible for neuronal senescence, and degeneration. In addition, behavioral experiments show that RAD6B-deficient mice exhibit marked learning and memory deficits. In conclusion, these findings suggest that RAD6B is critical for neural integrity and that the absence of RAD6B accelerates neurodegeneration in mice.

19.
BMC Genomics ; 20(1): 638, 2019 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-31395005

RESUMEN

BACKGROUND: Researchers today are generating unprecedented amounts of biological data. One trend in current biological research is integrated analysis with multi-platform data. Effective integration of multi-platform data into the solution of a single or multi-task classification problem; however, is critical and challenging. In this study, we proposed HetEnc, a novel deep learning-based approach, for information domain separation. RESULTS: HetEnc includes both an unsupervised feature representation module and a supervised neural network module to handle multi-platform gene expression datasets. It first constructs three different encoding networks to represent the original gene expression data using high-level abstracted features. A six-layer fully-connected feed-forward neural network is then trained using these abstracted features for each targeted endpoint. We applied HetEnc to the SEQC neuroblastoma dataset to demonstrate that it outperforms other machine learning approaches. Although we used multi-platform data in feature abstraction and model training, HetEnc does not need multi-platform data for prediction, enabling a broader application of the trained model by reducing the cost of gene expression profiling for new samples to a single platform. Thus, HetEnc provides a new solution to integrated gene expression analysis, accelerating modern biological research.


Asunto(s)
Biología Computacional/métodos , Aprendizaje Profundo , Bases de Datos Factuales , Humanos , Modelos Estadísticos , Neuroblastoma/genética , Transcriptoma , Aprendizaje Automático no Supervisado
20.
Neural Regen Res ; 12(7): 1111-1118, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28852393

RESUMEN

Sensitive smell discrimination is based on structural plasticity of the olfactory bulb, which depends on migration and integration of newborn neurons from the subventricular zone. In this study, we examined the relationship between neural stem cell status in the subventricular zone and olfactory function in rats with diabetes mellitus. Streptozotocin was injected through the femoral vein to induce type 1 diabetes mellitus in Sprague-Dawley rats. Two months after injection, olfactory sensitivity was decreased in diabetic rats. Meanwhile, the number of BrdU-positive and BrdU+/DCX+ double-labeled cells was lower in the subventricular zone of diabetic rats compared with age-matched normal rats. Western blot results revealed downregulated expression of insulin receptor ß, phosphorylated glycogen synthase kinase 3ß, and ß-catenin in the subventricular zone of diabetic rats. Altogether, these results indicate that diabetes mellitus causes insulin deficiency, which negatively regulates glycogen synthase kinase 3ß and enhances ß-catenin degradation, with these changes inhibiting neural stem cell proliferation. Further, these signaling pathways affect proliferation and differentiation of neural stem cells in the subventricular zone. Dysfunction of subventricular zone neural stem cells causes a decline in olfactory bulb structural plasticity and impairs olfactory sensitivity in diabetic rats.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...