Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 19 de 19
1.
Nature ; 629(8012): 679-687, 2024 May.
Article En | MEDLINE | ID: mdl-38693266

Pancreatic intraepithelial neoplasias (PanINs) are the most common precursors of pancreatic cancer, but their small size and inaccessibility in humans make them challenging to study1. Critically, the number, dimensions and connectivity of human PanINs remain largely unknown, precluding important insights into early cancer development. Here, we provide a microanatomical survey of human PanINs by analysing 46 large samples of grossly normal human pancreas with a machine-learning pipeline for quantitative 3D histological reconstruction at single-cell resolution. To elucidate genetic relationships between and within PanINs, we developed a workflow in which 3D modelling guides multi-region microdissection and targeted and whole-exome sequencing. From these samples, we calculated a mean burden of 13 PanINs per cm3 and extrapolated that the normal intact adult pancreas harbours hundreds of PanINs, almost all with oncogenic KRAS hotspot mutations. We found that most PanINs originate as independent clones with distinct somatic mutation profiles. Some spatially continuous PanINs were found to contain multiple KRAS mutations; computational and in situ analyses demonstrated that different KRAS mutations localize to distinct cell subpopulations within these neoplasms, indicating their polyclonal origins. The extensive multifocality and genetic heterogeneity of PanINs raises important questions about mechanisms that drive precancer initiation and confer differential progression risk in the human pancreas. This detailed 3D genomic mapping of molecular alterations in human PanINs provides an empirical foundation for early detection and rational interception of pancreatic cancer.


Exome Sequencing , Mutation , Pancreatic Neoplasms , Precancerous Conditions , Proto-Oncogene Proteins p21(ras) , Humans , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Proto-Oncogene Proteins p21(ras)/genetics , Precancerous Conditions/genetics , Precancerous Conditions/pathology , Carcinoma in Situ/genetics , Carcinoma in Situ/pathology , Pancreas/cytology , Female , Genomics , Single-Cell Analysis , Male , Machine Learning , Clone Cells/metabolism , Clone Cells/cytology , Genetic Heterogeneity , Imaging, Three-Dimensional , Adult , Workflow
2.
Mod Pathol ; 36(10): 100266, 2023 Oct.
Article En | MEDLINE | ID: mdl-37391169

Phosphaturic mesenchymal tumors (PMTs) are rare neoplasms of soft tissue or bone. Although previous studies revealed that approximately 50% of PMTs harbor FN1::FGFR1 fusions, the molecular mechanisms in the remaining cases are largely unknown. In this study, fusion genes were investigated using RNA-based next-generation sequencing in 76 retrospectively collected PMTs. Novel fusions were validated with Sanger sequencing and fluorescence in situ hybridization. Fusion genes were detected in 52/76 (68.4%) PMTs, and 43/76 (56.6%) harbored FN1::FGFR1 fusions. Fusion transcripts and breakpoints of the FN1::FGFR1 fusions were diverse. The most common fusion transcript was between exon 20 of FN1 and exon 9 of FGFR1 (7/43, 16.3%). The most upstream breakpoint of the FN1 gene was located at the 3' end of exon 12, and the most downstream breakpoint of the FGFR1 gene was at the 5' end of exon 9, suggesting the inessential nature of the third fibronectin-type domain of FN1 and the necessity of the transmembrane domain of FGFR1 in the FN1::FGFR1 fusion protein, respectively. Moreover, the reciprocal FGFR1::FN1 fusions, which had not been identified in previous studies, were detected in 18.6% (8/43) of FN1::FGFR1 fusion-positive PMTs. Novel fusions were identified in 6/76 (7.9%) FN1::FGFR1 fusion-negative PMTs, including 2 involving FGFR: FGFR1::USP33 (1/76, 1.3%) and FGFR1::TLN1 (1/76, 1.3%). Other novel fusions identified were the PDGFRA::USP35 (1/76, 1.3%), SPTBN1::YWHAQ (1/76, 1.3%), GTF2I::RALGPS1 (1/76, 1.3%), and LTBP1::VWA8 (1/76, 1.3%) fusions. In addition to these novel fusions, FN1::FGFR2 (1/76, 1.3%), NIPBL::BEND2 (1/76, 1.3%), and KIAA1549::BRAF fusions (1/76, 1.3%) were also identified in FN1::FGFR1-negative cases arising from the thigh, ilium, and acetabulum, respectively. The frequency of oncogenic fusions was significantly higher (P = .012) in tumors derived from extremities (29/35, 82.9%) compared with other locations (23/41, 56.1%). No significant correlation was identified between fusions and recurrence (P = .786). In conclusion, we report fusion transcripts and breakpoints of FN1::FGFR1 in PMTs in detail, providing insights into fusion protein functions. We also revealed that a considerable proportion of PMTs without FN1::FGFR1 fusion carried novel fusions, providing further insight into the genetic basis of PMTs.

3.
bioRxiv ; 2023 Jan 28.
Article En | MEDLINE | ID: mdl-36747709

Pancreatic intraepithelial neoplasia (PanIN) is a precursor to pancreatic cancer and represents a critical opportunity for cancer interception. However, the number, size, shape, and connectivity of PanINs in human pancreatic tissue samples are largely unknown. In this study, we quantitatively assessed human PanINs using CODA, a novel machine-learning pipeline for 3D image analysis that generates quantifiable models of large pieces of human pancreas with single-cell resolution. Using a cohort of 38 large slabs of grossly normal human pancreas from surgical resection specimens, we identified striking multifocality of PanINs, with a mean burden of 13 spatially separate PanINs per cm3 of sampled tissue. Extrapolating this burden to the entire pancreas suggested a median of approximately 1000 PanINs in an entire pancreas. In order to better understand the clonal relationships within and between PanINs, we developed a pipeline for CODA-guided multi-region genomic analysis of PanINs, including targeted and whole exome sequencing. Multi-region assessment of 37 PanINs from eight additional human pancreatic tissue slabs revealed that almost all PanINs contained hotspot mutations in the oncogene KRAS, but no gene other than KRAS was altered in more than 20% of the analyzed PanINs. PanINs contained a mean of 13 somatic mutations per region when analyzed by whole exome sequencing. The majority of analyzed PanINs originated from independent clonal events, with distinct somatic mutation profiles between PanINs in the same tissue slab. A subset of the analyzed PanINs contained multiple KRAS mutations, suggesting a polyclonal origin even in PanINs that are contiguous by rigorous 3D assessment. This study leverages a novel 3D genomic mapping approach to describe, for the first time, the spatial and genetic multifocality of human PanINs, providing important insights into the initiation and progression of pancreatic neoplasia.

4.
Cancer Lett ; 555: 216040, 2023 Feb 28.
Article En | MEDLINE | ID: mdl-36565920

Pancreatic stellate cells (PSCs) are crucial for metabolism and disease progression in pancreatic ductal adenocarcinoma (PDAC). However, detailed mechanisms of PSCs in glutamine (Gln) metabolism and tumor-stromal metabolic interactions have not been well clarified. Here we showed that tumor tissues displayed Gln deficiency in orthotopic PDAC models. Single-cell RNA sequencing analysis revealed metabolic heterogeneity in PDAC, with significantly higher expression of Gln catabolism pathway in stromal cells. Significantly higher glutamine synthetase (GS) protein expression was further validated in human tissues and cells. Elevated GS levels in tumor and stroma were independently prognostic of poorer prognosis in PDAC patients. Gln secreted by PSCs increased basal oxygen consumption rate in PCCs. Depletion of GS in PSCs significantly decreased PCCs proliferation in vitro and in vivo. Mechanistically, activation of Wnt signaling induced directly binding of ß-catenin/TCF7 complex to GS promoter region and upregulated GS expression. Rescue experiments testified that GS overexpression recovered ß-catenin knockdown-mediated function on Gln synthesis and tumor-promoting ability of PSCs. Overall, these findings identify the Wnt/ß-catenin/TCF7/GS-mediated growth-promoting effect of PSCs and provide new insights into stromal Gln metabolism, which may offer novel therapeutic strategies for PDAC.


Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Glutamine/metabolism , Pancreatic Stellate Cells/metabolism , beta Catenin/genetics , beta Catenin/metabolism , Pancreatic Neoplasms/pathology , Carcinoma, Pancreatic Ductal/pathology , Cell Transformation, Neoplastic/metabolism , Cell Line, Tumor , Cell Proliferation , T Cell Transcription Factor 1/metabolism , Pancreatic Neoplasms
5.
BMC Med ; 20(1): 458, 2022 11 25.
Article En | MEDLINE | ID: mdl-36434648

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) has the lowest overall survival rate primarily due to the late onset of symptoms and rapid progression. Reliable and accurate tests for early detection are lacking. We aimed to develop a noninvasive test for early PDAC detection by capturing the circulating tumour DNA (ctDNA) methylation signature in blood. METHODS: Genome-wide methylation profiles were generated from PDAC and nonmalignant tissues and plasma. Methylation haplotype blocks (MHBs) were examined to discover de novo PDAC markers. They were combined with multiple cancer markers and screened for PDAC classification accuracy. The most accurate markers were used to develop PDACatch, a targeted methylation sequencing assay. PDACatch was applied to additional PDAC and healthy plasma cohorts to train, validate and independently test a PDAC-discriminating classifier. Finally, the classifier was compared and integrated with carbohydrate antigen 19-9 (CA19-9) to evaluate and maximize its accuracy and utility. RESULTS: In total, 90 tissues and 546 plasma samples were collected from 232 PDAC patients, 25 chronic pancreatitis (CP) patients and 323 healthy controls. Among 223 PDAC cases with known stage information, 43/119/38/23 cases were of Stage I/II/III/IV. A total of 171 de novo PDAC-specific markers and 595 multicancer markers were screened for PDAC classification accuracy. The top 185 markers were included in PDACatch, from which a 56-marker classifier for PDAC plasma was trained, validated and independently tested. It achieved an area under the curve (AUC) of 0.91 in both the validation (31 PDAC, 26 healthy; sensitivity = 84%, specificity = 89%) and independent tests (74 PDAC, 65 healthy; sensitivity = 82%, specificity = 88%). Importantly, the PDACatch classifier detected CA19-9-negative PDAC plasma at sensitivities of 75 and 100% during the validation and independent tests, respectively. It was more sensitive than CA19-9 in detecting Stage I (sensitivity = 80 and 68%, respectively) and early-stage (Stage I-IIa) PDAC (sensitivity = 76 and 70%, respectively). A combinatorial classifier integrating PDACatch and CA19-9 outperformed (AUC=0.94) either PDACatch (0.91) or CA19-9 (0.89) alone (p < 0.001). CONCLUSIONS: The PDACatch assay demonstrated high sensitivity for early PDAC plasma, providing potential utility for noninvasive detection of early PDAC and indicating the effectiveness of methylation haplotype analyses in discovering robust cancer markers.


Carcinoma, Pancreatic Ductal , Circulating Tumor DNA , Pancreatic Neoplasms , Humans , Circulating Tumor DNA/genetics , CA-19-9 Antigen , Methylation , Biomarkers, Tumor/genetics , Case-Control Studies , Carcinoma, Pancreatic Ductal/diagnosis , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/pathology , Pancreatic Neoplasms/diagnosis , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms
6.
Histol Histopathol ; 37(10): 1031-1040, 2022 Oct.
Article En | MEDLINE | ID: mdl-35656795

The malignancy of pancreatic ductal adenocarcinoma (PDAC) results from high frequency of recurrence and limited effective therapies. Targeted therapy is a promising treatment in multiple solid tumours. A new target, claudin 18 isoform 2 (CLDN18.2) was discovered in gastric and pancreatic adenocarcinoma, but more clinical evaluations of CLDN18.2 are still needed. Several CLDN18.2-targeted drugs have already been in procedure of clinical trials. Therefore, the present study aimed to explore the expression and clinical value of CLDN18.2 in PDAC by immunohistochemistry. A microarray cohort of 302 PDAC specimens and a whole-slide cohort of randomized 84 PDAC specimens were constructed. In total, 56.52% (171/302) of PDAC patients showed diverse positivity for CLDN18.2, especially in highly differentiated PDAC. About eighty-two percent (62/75) highly- and 62.61% (72/115) intermediate-differentiated PDAC showed positive for CLDN18.2, while only 10.16% (6/59) low differentiated PDAC was positive for CLDN18.2. Besides, CLDN18.2 positivity was associated with several clinicopathological characteristics, including sex (P=0.001), smoking (P=0.006), abdominal pain (P=0.021), jaundice (P=0.010), pathological differentiation (P=0.001), common bile duct invasion (P=0.010), and M stage (P=0.003). CLDN18.2-positive expression also predicts an improved survival (P=0.032) but not progression free survival (P=0.460). However, CLDN18.2 is not an independent prognostic predictor. In conclusion, CLDN18.2 may be a potential therapeutic target for PDAC and the study supplies persuasive pathological evidence for CLDN18.2-targeted therapy on PDAC patients.


Adenocarcinoma , Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Adenocarcinoma/pathology , Biomarkers, Tumor/metabolism , Carcinoma, Pancreatic Ductal/metabolism , Cell Adhesion Molecules , China , Claudins , Pancreatic Neoplasms/pathology , Prognosis , Protein Isoforms , Retrospective Studies , Pancreatic Neoplasms
7.
Front Oncol ; 12: 842703, 2022.
Article En | MEDLINE | ID: mdl-35615156

Objective: To investigate the clinical characteristics and survival outcomes of patients with malignant transformation arising from ovarian mature cystic teratoma (MT-MCT). Methods: This retrospective study included patients with ovarian MCTs at Peking Union Medical College Hospital (PUMCH) during 1990.01-2020.12. When the pathologic histology was MT-MCT, detailed information was collected. Results: Overall, 7229 ovarian MCT patients and 22 patients with MT-MCT were enrolled. The rate of malignant transformation of all ovarian MCTs was 0.30%. Most patients with MT-MCT were 51 (21-75) years old, and the tumor mass size was 10 (3-30) cm. The typical clinical symptoms were mainly abdominal pain and distension. The levels of tumor markers were elevated on preoperative examination. Early diagnosis could be made by ultrasonic examination, pelvic enhanced MRI and CT. Most patients underwent debulking surgery and adjuvant chemotherapy. The most common histological type to exhibit malignant transformation was squamous cell carcinoma (59.1%), followed by adenocarcinoma (13.6%), carcinoid (9.1%), and borderline tumor (18.2%). The 5-year RFS and OS rates were 54.5% and 81.8%, respectively. Patients with FIGO stage I had the best RFS (P=0.047) and OS (P=0.018), followed by those with FIGO stage II-IV. Conclusion: MT-MCTs mainly occur in elderly females, are rare and have a poor prognosis. Advanced FIGO stage is a risk factor for survival. Although there is no standard treatment, cytoreductive debulking surgery and adjuvant chemotherapy could be considered. Perimenopausal and menopausal women with MCT should receive surgical treatment.

8.
Clin Transl Med ; 12(1): e670, 2022 01.
Article En | MEDLINE | ID: mdl-35061935

The poor prognosis of pancreatic ductal adenocarcinoma (PDAC) is associated with the tumour heterogeneity. To explore intra- and inter-tumoural heterogeneity in PDAC, we analysed the multi-omics profiles of 61 PDAC lesion samples, along with the matched pancreatic normal tissue samples, from 19 PDAC patients. Haematoxylin and Eosin (H&E) staining revealed that diversely differentiated lesions coexisted both within and across individual tumours. Whole exome sequencing (WES) of samples from multi-region revealed diverse types of mutations in diverse genes between cancer cells within a tumour and between tumours from different individuals. The copy number variation (CNV) analysis also showed that PDAC exhibited intra- and inter-tumoural heterogeneity in CNV and that high average CNV burden was associated poor prognosis of the patients. Phylogenetic tree analysis and clonality/timing analysis of mutations displayed diverse evolutionary pathways and spatiotemporal characteristics of genomic alterations between different lesions from the same or different tumours. Hierarchical clustering analysis illustrated higher inter-tumoural heterogeneity than intra-tumoural heterogeneity of PDAC at the transcriptional levels as lesions from the same patients are grouped into a single cluster. Immune marker genes are differentially expressed in different regions and tumour samples as shown by tumour microenvironment (TME) analysis. TME appeared to be more heterogeneous than tumour cells in the same patient. Lesion-specific differentially methylated regions (DMRs) were identified by methylated DNA immunoprecipitation sequencing (MeDIP-seq). Furthermore, the integration analysis of multi-omics data showed that the mRNA levels of some genes, such as PLCB4, were significantly correlated with the gene copy numbers. The mRNA expressions of potential PDAC biomarkers ZNF521 and KDM6A were correlated with copy number alteration and methylation, respectively. Taken together, our results provide a comprehensive view of molecular heterogeneity and evolutionary trajectories of PDAC and may guide personalised treatment strategies in PDAC therapy.


Adenocarcinoma/physiopathology , Carcinoma, Pancreatic Ductal/physiopathology , Gene Expression Profiling/methods , Adenocarcinoma/classification , Carcinoma, Pancreatic Ductal/classification , China , Female , Gene Expression Profiling/trends , Humans , Kaplan-Meier Estimate , Male , Middle Aged , Prognosis
9.
Front Cell Dev Biol ; 9: 724282, 2021.
Article En | MEDLINE | ID: mdl-34733841

Although RNA m6A regulators have been implicated in the tumorigenesis of several different types of tumors, including pancreatic cancer, their clinical relevance and intrinsic regulatory mechanism remain elusive. This study analyzed eight m6A regulators (METTL3, METTL14, WTAP, FTO, ALKBH5, and YTHDF1-3) in pancreatic ductal adenocarcinoma (PDAC) and found that only RNA m6A demethylase ALKBH5 serves as an independent favorable prognostic marker for this tumor. To better understand the molecular mechanism underlying the protective effect conferred by ALKBH5 against pancreatic tumorigenesis, we performed a transcriptome-wide analysis of m6A methylation, gene expression, and alternative splicing (AS) using the MIA PaCa-2 stable cell line with ALKBH5 overexpression. We demonstrated that ALKBH5 overexpression induced a reduction in RNA m6A levels globally. Furthermore, mRNAs encoding ubiquitin ligase FBXL5, and mitochondrial iron importers SLC25A28 and SLC25A37, were identified as substrates of ALKBH5. Mechanistically, the RNA stabilities of FBXL5 and SLC25A28, and the AS of SLC25A37 were affected, which led to their upregulation in pancreatic cancer cell line. Particularly, we observed that downregulation of FBXL5 in tumor samples correlated with shorter survival time of patients. Owing to FBXL5-mediated degradation, ALKBH5 overexpression incurred a significant reduction in iron-regulatory protein IRP2 and the modulator of epithelial-mesenchymal transition (EMT) SNAI1. Notably, ALKBH5 overexpression led to a significant reduction in intracellular iron levels as well as cell migratory and invasive abilities, which could be rescued by knocking down FBXL5. Overall, our results reveal a previously uncharacterized mechanism of ALKBH5 in protecting against PDAC through modulating regulators of iron metabolism and underscore the multifaceted role of m6A in pancreatic cancer.

10.
J Transl Med ; 19(1): 433, 2021 10 17.
Article En | MEDLINE | ID: mdl-34657620

BACKGROUND: Colorectal carcinoma (CRC) harboring oncogenic fusions has been reported to be highly enriched in mismatch repair deficient (dMMR) tumors with MLH1 hypermethylation (MLH1me+) and wild-type BRAF and RAS. In this study, dMMR CRCs were screened for oncogene fusions using sequential DNA and RNA next generation sequencing (NGS). RESULTS: Comprehensive analysis of fusion variants, genetic profiles and clinicopathological features in fusion-positive dMMR CRCs was performed. Among 193 consecutive dMMR CRCs, 39 cases were identified as MLH1me+ BRAF/RAS wild-type. Eighteen fusion-positive cases were detected by DNA NGS, all of which were MLH1me+ and BRAF/RAS wild-type. RNA NGS was sequentially conducted in the remaining 21 MLH1me+ BRAF/RAS wild-type cases lacking oncogenic fusions by DNA NGS, and revealed four additional fusions, increasing the proportion of fusion-positive tumors from 46% (18/39) to 56% (22/39) in MLH1me+ BRAF/RAS wild-type dMMR cases. All 22 fusions were found to involve RTK-RAS pathway. Most fusions affected targetable receptor tyrosine kinases, including NTRK1(9/22, 41%), NTRK3(5/22, 23%), ALK(3/22, 14%), RET(2/22, 9%) and MET(1/22, 5%), whilst only two fusions affected mitogen-activated protein kinase cascade components BRAF and MAPK1, respectively. RNF43 was identified as the most frequently mutated genes, followed by APC, TGFBR2, ATM, BRCA2 and FBXW7. The vast majority (19/22, 86%) displayed alterations in key WNT pathway components, whereas none harbored additional mutations in RTK-RAS pathway. In addition, fusion-positive tumors were typically diagnosed in elder patients and predominantly right-sided, and showed a significantly higher preponderance of hepatic flexure localization (P < 0.001) and poor differentiation (P = 0.019), compared to fusion-negative MLH1me+ CRCs. CONCLUSIONS: We proved that sequential DNA and RNA NGS was highly effective for fusion detection in dMMR CRCs, and proposed an optimized practical fusion screening strategy. We further revealed that dMMR CRCs harboring oncogenic fusion was a genetically and clinicopathologically distinctive subgroup, and justified more precise molecular subtyping for personalized therapy.


Colorectal Neoplasms , Oncogene Fusion , Aged , Colorectal Neoplasms/genetics , DNA , DNA Mismatch Repair/genetics , High-Throughput Nucleotide Sequencing , Humans , MutL Protein Homolog 1/genetics , Mutation/genetics , Proto-Oncogene Proteins B-raf/genetics , RNA , ras Proteins
11.
Front Immunol ; 12: 690056, 2021.
Article En | MEDLINE | ID: mdl-34335594

Background: Pancreatic ductal adenocarcinoma (PDAC) remains treatment refractory. Immunotherapy has achieved success in the treatment of multiple malignancies. However, the efficacy of immunotherapy in PDAC is limited by a lack of promising biomarkers. In this research, we aimed to identify robust immune molecular subtypes of PDAC to facilitate prognosis prediction and patient selection for immunotherapy. Methods: A training cohort of 149 PDAC samples from The Cancer Genome Atlas (TCGA) with mRNA expression data was analyzed. By means of non-negative matrix factorization (NMF), we virtually dissected the immune-related signals from bulk gene expression data. Detailed immunogenomic and survival analyses of the immune molecular subtypes were conducted to determine their biological and clinical relevance. Validation was performed in five independent datasets on a total of 615 samples. Results: Approximately 31% of PDAC samples (46/149) had higher immune cell infiltration, more active immune cytolytic activity, higher activation of the interferon pathway, a higher tumor mutational burden (TMB), and fewer copy number alterations (CNAs) than the other samples (all P < 0.001). This new molecular subtype was named Immune Class, which served as an independent favorable prognostic factor for overall survival (hazard ratio, 0.56; 95% confidence interval, 0.33-0.97). Immune Class in cooperation with previously reported tumor and stroma classifications had a cumulative effect on PDAC prognostic stratification. Moreover, programmed cell death-1 (PD-1) inhibitors showed potential efficacy for Immune Class (P = 0.04). The robustness of our immune molecular subtypes was further verified in the validation cohort. Conclusions: By capturing immune-related signals in the PDAC tumor microenvironment, we reveal a novel molecular subtype, Immune Class. Immune Class serves as an independent favorable prognostic factor for overall survival in PDAC patients.


Biomarkers, Tumor/genetics , Carcinoma, Pancreatic Ductal/genetics , Gene Expression Profiling , Pancreatic Neoplasms/genetics , Transcriptome , Tumor Microenvironment/immunology , Carcinoma, Pancreatic Ductal/immunology , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/therapy , Clinical Decision-Making , Databases, Genetic , Female , Humans , Immunogenetic Phenomena , Immunotherapy , Male , Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/therapy , Predictive Value of Tests , Prognosis , Reproducibility of Results
12.
J Clin Endocrinol Metab ; 106(4): 1011-1021, 2021 03 25.
Article En | MEDLINE | ID: mdl-33394038

CONTEXT: Follicular thyroid carcinoma (FTC) is the second most common type of thyroid carcinoma and must be pathologically distinguished from benign follicular adenoma (FA). Additionally, the clinical assessment of thyroid tumors with uncertain malignant potential (TT-UMP) demands effective indicators. OBJECTIVE: We aimed to identify discriminating DNA methylation markers between FA and FTC. METHODS: DNA methylation patterns were investigated in 33 FTC and 33 FA samples using reduced representation bisulfite sequencing and methylation haplotype block-based analysis. A prediction model was constructed and validated in an independent cohort of 13 FTC and 13 FA samples. Moreover, 36 TT-UMP samples were assessed using this model. RESULTS: A total of 70 DNA methylation markers, approximately half of which were located within promoters, were identified to be significantly different between the FTC and FA samples. All the Gene Ontology terms enriched among the marker-associated genes were related to "DNA binding," implying that the inactivation of DNA binding played a role in FTC development. A random forest model with an area under the curve of 0.994 was constructed using those markers for discriminating FTC from FA in the validation cohort. When the TT-UMP samples were scored using this model, those with fewer driver mutations also exhibited lower scores. CONCLUSION: An FTC-predicting model was constructed using DNA methylation markers, which distinguished between FA and FTC tissues with a high degree of accuracy. This model can also be used to help determine the potential of malignancy in TT-UMP.


Adenocarcinoma, Follicular/diagnosis , Adenoma/diagnosis , Biomarkers, Tumor/genetics , DNA Methylation , Thyroid Neoplasms/diagnosis , Adenocarcinoma, Follicular/genetics , Adenocarcinoma, Follicular/metabolism , Adenoma/genetics , Adenoma/metabolism , Adolescent , Adult , Aged , Biomarkers, Tumor/metabolism , Child , Diagnosis, Differential , Female , Haplotypes , Humans , Male , Middle Aged , Promoter Regions, Genetic/genetics , Sensitivity and Specificity , Thyroid Neoplasms/genetics , Thyroid Neoplasms/metabolism , Young Adult
13.
Pathol Res Pract ; 217: 153313, 2021 Jan.
Article En | MEDLINE | ID: mdl-33341545

Mitogen-activated protein kinase kinase 4 (MAP2K4) is a tumor suppressor in many cancers. However, its roles and action mechanisms in pancreatic ductal adenocarcinoma (PDAC) remain unclear. Here, we analyzed MAP2K4 and its downstream kinases (c-Jun N-terminal kinase (JNK) and p38) using immunohistochemical staining and their prognostic significances using univariate and multivariate Cox proportional hazards regression analysis in our PDAC cohort. Then, we validated MAP2K4/JNK/p38 mRNA levels and prognostic significances using The Cancer Genome Atlas (TCGA) database. Finally, we evaluated the effects of MAP2K4 on the proliferation and invasion of PDAC cells. MAP2K4, JNK, and p38 proteins were expressed in 97.3 % (72/74), 95.6 % (65/68), and 88.6 % (62/70) of the samples, respectively, and their levels in tumor tissues were significantly higher than those in normal ducts. MAP2K4 protein expression was lower in male patients (p = 0.028). In our PDAC cohort, advanced TNM stage, low MAP2K4, and high JNK protein levels were significant prognostic factors for poor overall survival (OS) based on a univariate survival analysis (p = 0.006, p < 0.001, and p = 0.004, respectively). N stage and MAP2K4 and JNK protein levels were independent prognostic factors for OS based on multivariate analysis. We then built a prognosis prediction nomogram combining the standard TNM staging system with MAP2K4 and JNK expression that had a Harrell's C-index of 0.645. The new prognosis prediction model effectively stratified the resected patients with PDAC, from both our cohort and TCGA database, into low- and high-risk groups. Finally, MAP2K4 overexpression inhibited pancreatic cancer cell proliferation and migration in vitro. This study shows that reduced protein and mRNA levels of MAP2K4 found in PDAC patients, coupled to in vitro effects observed, support the tumor suppressor role of MAP2K4 in PDAC. Importantly, combining MAP2K4 and JNK expression with the TNM staging system results in a better prediction of postoperative survival of patients with PDAC.


Biomarkers, Tumor/analysis , Carcinoma, Pancreatic Ductal/enzymology , Decision Support Techniques , JNK Mitogen-Activated Protein Kinases/analysis , MAP Kinase Kinase 4/analysis , Nomograms , Pancreatic Neoplasms/enzymology , Adult , Aged , Aged, 80 and over , Biomarkers, Tumor/genetics , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/surgery , Cell Line, Tumor , Cell Movement , Cell Proliferation , Female , Humans , JNK Mitogen-Activated Protein Kinases/genetics , MAP Kinase Kinase 4/genetics , Male , Middle Aged , Neoplasm Invasiveness , Neoplasm Staging , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/surgery , Predictive Value of Tests , Reproducibility of Results , Retrospective Studies , Risk Assessment , Risk Factors , Treatment Outcome , p38 Mitogen-Activated Protein Kinases/analysis
14.
Interdiscip Sci ; 12(2): 145-154, 2020 Jun.
Article En | MEDLINE | ID: mdl-31983041

BACKGROUND: Although microsatellite instability (MSI) is most commonly detected in colorectal cancer (CRC), improvement in MSI analysis method can always help us better assessing MSI phenotypes and gaining useful information in challenging cases. The purpose of current study is to explore whether the ProDx® MSI analysis System (ProDx® MSI) can improve MSI classification in CRC. METHODS: We compared the MSI profiles of 97 FFPE samples from CRC patients by ProDx® MSI with Promega MSI analysis System 1.2 and NCI panel. The result is then confirmed by IHC test, which evaluate MMR protein expression. Furthermore, next generation sequencing was performed to double confirm the specimens with discordant results. RESULTS: Among the total 97 CRC cases, 35 were scored as MSI-High by ProDx® MSI, Promega MSI analysis System 1.2, and NCI panel simultaneously. Three extra MSI-High cases were identified by ProDx® MSI. These three cases were classified as MSI-Low by NCI panel, while two of these as MSI-Low, and 1 as MSS by Promega MSI analysis System 1.2. ProDx® MSI had higher concordance with IHC detection compared with Promega MSI Analysis System 1.2 and NCI panel at 99.0%, 96.9%, and 95.9%, respectively. The ProDx® MSI distinguished MSI status with 100% sensitivity and 98.4% specificity. Our data showed that MSI-High phenotype occurred most frequently in tumor development stage I and stage II. CONCLUSIONS: The colorectal cancer can be classified according to MSI status accurately by ProDx® MSI. More cases with MSI-High feature may be revealed by ProDx® MSI than by previous test systems in colorectal cancer.


Colorectal Neoplasms/genetics , Computational Biology/methods , DNA Mismatch Repair , DNA , Microsatellite Instability , Microsatellite Repeats , Phenotype , Adult , Aged , Brain Neoplasms/diagnosis , Colorectal Neoplasms/diagnosis , Female , High-Throughput Nucleotide Sequencing , Humans , Male , Middle Aged , Neoplastic Syndromes, Hereditary/diagnosis , Sensitivity and Specificity
15.
J Cancer ; 10(16): 3860-3870, 2019.
Article En | MEDLINE | ID: mdl-31333803

The nucleoprotein AHNAK (AHNAK) is a large scaffold protein that is involved in several biological processes. Previous studies have suggested a possible relation between AHNAK and the epithelial-mesenchymal transition (EMT). However, the role of AHNAK in pancreatic ductal adenocarcinoma (PDAC) has not been unveiled. The present study focuses on identifying the potential value of the biological effects of AHNAK in PDAC, which is one of the most lethal malignancies. Bioinformatic analysis was carried for driver gene prediction, and we proved that AHNAK was a driver gene of pancreatic adenocarcinoma and a predictor of poor outcomes of PDAC by clinical characteristics analysis and in vitro experiments. High AHNAK expression was associated with short disease-free survival and poor overall survival. In vitro assays showed that AHNAK was associated with cell proliferation and migration, and a positive relation was observed between AHNAK and the EMT. In conclusion, AHNAK is a crucial biomarker that may promote cellular proliferation and migration and thus impact PDAC outcomes via the EMT, which suggests that AHANK might be a potential target for PDAC.

16.
Diagn Pathol ; 14(1): 39, 2019 May 10.
Article En | MEDLINE | ID: mdl-31077238

BACKGROUND: One of the major challenges remaining in the classification of thyroid tumor is the determination of whether a nodule is benign or malignant. We aimed to characterize the mutational profiles of follicular thyroid tumor and to identify markers with potential diagnostic and prognostic implications. METHODS: Targeted sequencing with a panel of 18 thyroid cancer-related genes was performed on 48 tissue samples from follicular thyroid adenoma (FTA), 32 follicular tumors of uncertain malignant potential (FT-UMP), 17 well-differentiated tumors of uncertain malignant potential (WDT-UMP) and 53 samples from follicular thyroid carcinoma (FTC). The correlation of mutation profiles and clinicopathological features and prognosis were also analyzed. RESULTS: We identified 95 nonsilent mutations spanning 14 genes. Specifically, TERT promoter (TERTp) mutations were exclusively detected in FTC. A total of 80% EIF1AX exon 2 mutations (4/5) and 75% TSHR mutations (3/4) occurred in FTA, whereas the rest of them occurred in FT-UMP. KRAS mutations and TP53 mutations were only presented in borderline or malignant tumors. H/N-RAS mutations were detected in all four subtypes, but were most commonly found in WDT-UMP (p = 0.031). All N-RAS mutations were located at codon 61. BRAF V600E and RET fusion were absent in the entire cohort. In FTC cases, EIF1AX mutations were all located at intron 5/exon 6 and correlated with advanced disease (p = 0.032). Both EIF1AX and TERTp mutations predicted shorter disease-free survival (p = 0.007, p = 0.024, respectively). Further analysis revealed that TERTp mutations were correlated with shorter disease-free survival in patients with minimally invasive /encapsulated angioinvasive FTC (p = 0.017), but not in those with widely invasive FTC (p = 0.297). CONCLUSION: TERTp, EIF1AX, TSHR, H/N/K-RAS and TP53 mutations may have diagnostic or prognostic potential in follicular thyroid tumors. TERTp mutations may predict a poor outcome in patients with minimally invasive/encapsulated angioinvasive FTC.


Adenocarcinoma, Follicular/genetics , Biomarkers, Tumor/genetics , Telomerase/genetics , Thyroid Neoplasms/genetics , Adenocarcinoma, Follicular/diagnosis , Adenocarcinoma, Follicular/pathology , Disease-Free Survival , Humans , Kaplan-Meier Estimate , Mutation , Prognosis , Promoter Regions, Genetic/genetics , Retrospective Studies , Thyroid Gland/pathology , Thyroid Neoplasms/diagnosis , Thyroid Neoplasms/pathology
17.
Medicine (Baltimore) ; 98(11): e14846, 2019 Mar.
Article En | MEDLINE | ID: mdl-30882679

Tumor-induced osteomalacia (TIO) is a rare disease that behaves benignly. Very few reports about the features of the responsible tumors according to anatomical locations have been presented.In this retrospective study of 53 patients with TIO-associated tumors in the foot/ankle, tibia and femur, we compared preoperative, postoperative, and follow-up courses, including alkaline phosphatase, phosphorus, and fibroblast growth factor 23, to compare the characteristics of TIO-associated tumors in these 3 locations (level of evidence: therapeutic level III).Patients in the foot/ankle group had longer disease courses and therefore a significantly higher complication rate (P < .001). All TIO-associated tumors in the foot/ankle group involved soft tissue (P = .021), whereas most lesions in the tibia group involved bone, and therefore had much higher concentrations of alkaline phosphatase (P = .020). Additionally, serum phosphorus took much longer to normalize after surgery in the foot/ankle group than that in the other 2 groups (P = .004). Consequently, symptom remission was much better in the tibia and femur groups (P = .008). Moreover, the Ki 67 index in TIO-associated tumors was significantly higher in the foot/ankle group (P < .001) and the recurrence rate in this group was markedly higher (P = .002).The TIO-associated tumors in the foot/ankle are characteristically of occult onset, more soft-tissue involvement, and more readily recurrence. More knowledge and examinations are necessary to enable early diagnosis, radical treatments, and minimize recurrence. New therapies are welcomed and needed.


Lower Extremity/surgery , Neoplasms, Connective Tissue/surgery , Adult , Chi-Square Distribution , Female , Fibroblast Growth Factor-23 , Fibroblast Growth Factors/analysis , Fibroblast Growth Factors/blood , Humans , Ki-67 Antigen/analysis , Ki-67 Antigen/blood , Male , Middle Aged , Neoplasm Recurrence, Local/surgery , Neoplasms, Connective Tissue/complications , Osteomalacia , Paraneoplastic Syndromes , Phosphorus/analysis , Phosphorus/blood , Retrospective Studies , Tomography, X-Ray Computed/methods , Treatment Outcome
18.
Mod Pathol ; 32(7): 1053-1064, 2019 07.
Article En | MEDLINE | ID: mdl-30723297

Oncogenic fusions are rare in colorectal carcinomas, but may be important for prognosis and therapy. An effective strategy for screening targetable oncogenic fusions in colorectal carcinomas is needed. Here, we investigate molecular genetic alterations in colorectal carcinomas based on their DNA mismatch repair status, and to effectively screen for targetable oncogenic fusions in colorectal carcinomas. In this retrospective study, the initial cohort included 125 consecutive mismatch repair-deficient and 238 randomly selected mismatch repair-proficient colorectal carcinomas diagnosed between July 2015 and December 2017 at Peking Union Medical College Hospital. Targeted sequencing was performed. MLH1 promoter hypermethylation analysis was further employed for subgrouping dMMR colorectal carcinomas. Clinicopathological characteristics, molecular features, and survival outcome of colorectal carcinomas harboring oncogenic fusions were assessed. A multicenter cohort comprised of 227 colorectal carcinomas with dual loss of MLH1/PMS2 was used to validate the efficacy of the proposed screening strategy for oncogenic fusions. Of the 363 patients in the initial cohort, 11(3.0%) harbored oncogenic fusions and were all mismatch repair-deficient colorectal carcinomas with hypermethylated MLH1 and wild-type BRAF and KRAS, comprising 55% (11/20) of this subgroup. These patients with oncogenic fusions showed poorer 3-year cancer-specific survival compared with other Stage III/IV mismatch repair-deficient colorectal carcinoma patients (40% vs. 97%), and significantly higher CD274(PD-L1) expression in tumor cells compared with other dMMR colorectal carcinoma patients (46% vs. 6.1%, P < 0.001). An easy-to-perform and cost-efficient strategy for screening targetable fusions was proposed based on the current molecular testing algorithms for colorectal carcinomas, and validated in an independent multicenter cohort. In conclusion, oncogenic fusions were highly enriched and frequently detected in mismatch repair-deficient colorectal carcinomas with MLH1 hypermethylation and wild-type BRAF and KRAS, and were associated with poor prognosis and high tumor CD274(PD-L1) expression.


Brain Neoplasms/genetics , Colorectal Neoplasms/genetics , DNA Methylation , MutL Protein Homolog 1/genetics , Neoplastic Syndromes, Hereditary/genetics , Oncogene Fusion/genetics , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins p21(ras)/genetics , B7-H1 Antigen/genetics , Brain Neoplasms/mortality , Brain Neoplasms/pathology , Colorectal Neoplasms/mortality , Colorectal Neoplasms/pathology , DNA Mismatch Repair , Gene Rearrangement , Humans , Mutation , Neoplastic Syndromes, Hereditary/mortality , Neoplastic Syndromes, Hereditary/pathology , Prognosis , Promoter Regions, Genetic , Retrospective Studies , Survival Rate
19.
Exp Ther Med ; 7(4): 816-820, 2014 Apr.
Article En | MEDLINE | ID: mdl-24660029

Optimization of intratracheal instillation is necessary to establish an ideal animal model of acute lung injury (ALI) in order to further reveal the cellular and molecular pathogenesis of ALI. It is possible that instilling air from a prefilled syringe may promote the delivery of reagents into the alveolar spaces, resulting in different pulmonary responses. In the present study, the influence of instilling air by trans-tracheal intratracheal instillation in a lipopolysaccharide (LPS)-induced mouse model of ALI was investigated. The bronchoalveolar lavage (BAL) fluid biochemical index, BAL fluid differential cell counts, lung wet/dry weight ratio, lung histology and BAL fluid interleukin-8 (IL-8) levels were assessed 24 h subsequent to intratracheal instillation. Instilled air promoted LPS-induced ALI, as indicated by the severity of acute pulmonary inflammation and increased IL-8 release. In conclusion, this study indicates that instilled air may be used to improve the intratracheal instillation procedure and to establish a more reliable animal model of ALI.

...