Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 119
1.
Front Plant Sci ; 15: 1320226, 2024.
Article En | MEDLINE | ID: mdl-38590741

Recently, some new Qi-Nan clones of Aquilaria sinensis (Lour.) Spreng which intensively produces high-quality agarwood have been identified and propagated through grafting techniques. Previous studies have primarily focused on ordinary A. sinensis and the differences in composition when compared to Qi-Nan and ordinary A. sinensis. There are few studies on the formation mechanism of Qi-Nan agarwood and the dynamic changes in components and endophytic fungi during the induction process. In this paper, the characteristics, chemical composition, and changes in endophytic fungi of Qi-Nan agarwood induced after 1 year, 2 years, and 3 years were studied, and Qi-Nan white wood was used as the control. The results showed that the yield of Qi-Nan agarwood continued to increase with the induction time over a period of 3 years, while the content of alcohol extract from Qi-Nan agarwood reached its peak at two years. During the formation of agarwood, starch and soluble sugars in xylem rays and interxylary phloem are consumed and reduced. Most of the oily substances in agarwood were filled in xylem ray cells and interxylary phloem, and a small amount was filled in xylem vessels. The main components of Qi-Nan agarwood are also chromones and sesquiterpenes. With an increasing induction time, the content of sesquiterpenes increased, while the content of chromones decreased. The most abundant chromones in Qi-Nan agarwood were 2-(2-Phenethyl) chromone, 2-[2-(3-Methoxy-4-hydroxyphenyl) ethyl] chromone, and2-[2-(4-Methoxyphenyl) ethyl] chromone. Significant differences were observed in the species of the endophytic fungi found in Qi-Nan agarwood at different induction times. A total of 4 phyla, 73 orders, and 448 genera were found in Qi-Nan agarwood dominated by Ascomycota and Basidiomycota. Different induction times had a significant effect on the diversity of the endophytic fungal community in Qi-Nan. After the induction of agarwood formation, the diversity of Qi-Nan endophytic fungi decreased. Correlation analysis showed that there was a significant positive correlation between endophytic fungi and the yield, alcohol extract content, sesquiterpene content, and chromone content of Qi-Nan agarwood, which indicated that endophytic fungi play a role in promoting the formation of Qi-Nan agarwood. Qi-Nan agarwood produced at different induction times exhibited strong antioxidant capacity. DPPH free radical scavenging activity and reactive oxygen species clearance activity were significantly positively correlated with the content of sesquiterpenes and chromones in Qi-Nan agarwood.

2.
Medicine (Baltimore) ; 103(11): e37439, 2024 Mar 15.
Article En | MEDLINE | ID: mdl-38489711

The Golgi apparatus plays a crucial role in intracellular protein transportation, processing, and sorting. Dysfunctions of the Golgi apparatus have been implicated in tumorigenesis and drug resistance. This study aimed to investigate the prognostic and treatment response assessment value of Golgi apparatus-related gene (GARGs) features in gastric cancer patients. Transcriptome data and clinical information of gastric cancer patients were obtained from The Cancer Genome Atlas and Gene Expression Omnibus databases. Cox regression analysis was employed to assess the prognostic significance of GARGs and construct risk features. The immune landscape, drug sensitivity, immune therapy response, gene expression patterns, and somatic mutation characteristics were analyzed between different risk groups. A nomogram model for predicting gastric cancer prognosis was developed and evaluated. Among 1643 GARGs examined, 365 showed significant associations with gastric cancer prognosis. Five independent prognostic GARGs (NGF, ABCG1, CHAC1, GBA2, PCSK7) were selected to construct risk features for gastric cancer patients. These risk features effectively stratified patients into high-risk and low-risk groups, with the former exhibiting worse prognosis than the latter. Patients in the high-risk group displayed higher levels of immune cell infiltration, while the expression levels of NGF, CHAC1, GBA2, PCSK7 were significantly correlated with immune cell infiltration. Notably, the low-risk group exhibited higher sensitivity to epothilone.B, metformin, and tipifarnib compared to the high-risk group. Moreover, patients in the low-risk group demonstrated greater responsiveness to immune therapy than those in the high-risk group. In terms of biological processes and KEGG pathways related to immunity regulation, significant suppression was observed in the high-risk group compared to the low-risk group; meanwhile cell cycle pathways exhibited significant activation in the high-risk group. Furthermore, the low-risk group exhibited a higher tumor mutation burden compared to the high-risk group. The risk features derived from GARGs, in conjunction with age, were identified as independent risk factors for gastric cancer. The nomogram incorporating these factors demonstrated improved performance in predicting gastric cancer prognosis. Our study established risk features derived from GARGs that hold potential clinical utility in prognostic assessment and immune therapy response evaluation of gastric cancer patients.


Stomach Neoplasms , Humans , Stomach Neoplasms/drug therapy , Stomach Neoplasms/genetics , Prognosis , Immunotherapy , Golgi Apparatus , Subtilisins
3.
Int J Biol Sci ; 20(2): 801-817, 2024.
Article En | MEDLINE | ID: mdl-38169563

Somatostatin analogues (SSTA) are first-line pharmacological treatment choice for acromegaly, which received satisfying tumor shrinkage and normalization of growth hormone. However, there are still patients unresponsive to SSTA, and the underline mechanism remains unknown. Besides, there is no evidence regarding the role of endoplasmic reticulum stress (ERS) and its transmission in SSTA resistance, which also require investigation. Primary growth hormone adenoma cells and cell lines were treated with SSTA; autophagy double-labeled LC3 (mRFP-GFP) adenovirus transfection, flow cytometry sorting, western blotting, calcium imaging as well as immunofluorescence staining were used to determine ERS and autophagy signal transmission; xenograft and syngeneic tumor in vivo model were exploited to confirm the ERS signal transmission mediated effect. Our results revealed that SSTA induces ERS in pituitary growth hormone (GH) adenoma cells. The ERS signals can be intercellularly transmitted, leading to less responsible to SSTA treatment. Moreover, SSTA stimulates inositol triphosphate (IP3) elevation, mediating ERS intercellular transfer. In addition, connexin 36 tunnels ERS transmission, and its blocker, Quinine, exhibits a synergistic effect with SSTA treating GH adenoma. Our study provided insight into ERS intercellular transmission mediated SSTA resistance, which could be translated into clinical usage to improve SSTA efficiency in GH adenoma treatment.


Adenoma , Pituitary Neoplasms , Humans , Somatostatin/pharmacology , Somatostatin/therapeutic use , Growth Hormone/metabolism , Growth Hormone/therapeutic use , Pituitary Neoplasms/drug therapy , Pituitary Neoplasms/genetics , Pituitary Neoplasms/metabolism , Gap Junction delta-2 Protein , Adenoma/drug therapy , Endoplasmic Reticulum Stress
4.
J Cosmet Dermatol ; 23(2): 648-657, 2024 Feb.
Article En | MEDLINE | ID: mdl-37649302

BACKGROUND: In traditional Asian medicine, Gynostemma pentaphyllum Makino leaf extract (Gp) is used to treat aging, metabolic syndrome, diabetes, and neurodegenerative diseases. Hair loss and hair-graying are common phenomena that haunt everyone. However, whether Gp activities on inhibition of hair loss and getting gray have been rarely studied. AIM: Study the Gp activity and mechanism by in vivo and in vitro experiments to explore its application on hair health. METHODS: In the present study, we determined the effects of Gp on the expression of hair growth-related genes and proliferation of human dermal papilla cells (hDPCs). Furthermore, Gp was topically applied to the hair-shaved skin of male C57BL/6 mice, and the histological profile of the skin was studied. Because emotional stress may lead to melanocyte disappearance, norepinephrine-exposed mice B16 melanocytes were treated with Gp to elucidate the anti-hair graying capacity of Gp in response to this stress type. RESULTS: Gp stimulated the proliferation of hDPCs and the Wnt signaling pathways associated with hair growth; furthermore, the expression of the hair loss-related gene transforming growth factor-ß1 was suppressed. Gp treatment significantly increased the size of hair follicles in the treated mice and stimulated them. Moreover, Gp not only increased melanin synthesis but also tyrosinase activity in B16 cells. Quantitative real-time polymerase chain reaction revealed that Gp increased melanin synthesis by increasing the expression of tyrosine-related protein-1, tyrosine-related protein-2, tyrosinase, and microphthalmia-associated transcription factor. CONCLUSION: Our study provides preclinical evidence regarding the potential of Gp as a promising hair growth and anti-graying agent.


Gynostemma , Melanins , Male , Humans , Mice , Animals , Monophenol Monooxygenase , Mice, Inbred C57BL , Hair , Plant Extracts/pharmacology , Alopecia/drug therapy
5.
Neuro Oncol ; 26(1): 137-152, 2024 01 05.
Article En | MEDLINE | ID: mdl-37555799

BACKGROUND: Approximately 35% of pituitary adenoma (PA) display an aggressive profile, resulting in low surgical total resection rates, high recurrence rates, and worse prognosis. However, the molecular mechanism of PA invasion remains poorly understood. Although "a disintegrin and metalloproteinases" (ADAMs) are associated with the progression of many tumors, there are no reports on ADAM22 in PA. METHODS: PA transcriptomics databases and clinical specimens were used to analyze the expression of ADAM22. PA cell lines overexpressing wild-type ADAM22, the point mutation ADAM22, the mutated ADAM22 without disintegrin domain, and knocking down ADAM22 were generated. Cell proliferation/invasion assays, flow cytometry, immunohistochemistry, immunofluorescence, co-immunoprecipitation, mass spectrometry, Reverse transcription-quantitative real-time PCR, phos-tag SDS-PAGE, and Western blot were performed for function and mechanism research. Nude mice xenograft models and rat prolactinoma orthotopic models were used to validate in vitro findings. RESULTS: ADAM22 was significantly overexpressed in PA and could promote the proliferation, migration, and invasion of PA cells. ADAM22 interacted with integrin ß1 (ITGB1) and activated FAK/PI3K and FAK/ERK signaling pathways through its disintegrin domain to promote PA progression. ADAM22 was phosphorylated by PKA and recruited 14-3-3, thereby delaying its degradation. ITGB1-targeted inhibitor (anti-itgb1) exerted antitumor effects and synergistic effects in combination with somatostatin analogs or dopamine agonists in treating PA. CONCLUSIONS: ADAM22 was upregulated in PA and was able to promote PA proliferation, migration, and invasion by activating ITGB1 signaling. PKA may regulate the degradation of ADAM22 through post-transcriptional modification levels. ITGB1 may be a potential therapeutic target for PA.


Disintegrins , Pituitary Neoplasms , Mice , Humans , Animals , Rats , Integrin beta1/metabolism , Mice, Nude , Metalloproteases , Cell Line, Tumor , Cell Movement , Cell Proliferation
6.
Biomark Med ; 17(17): 723-735, 2023 09.
Article En | MEDLINE | ID: mdl-38085167

Background: We aim to investigate whether the neutrophil-to-serum iron ratio (N/SI) is a promising biomarker for acute myocardial infarction group (AMI) and Gensini score. Methods: A total of 263 patients were enrolled and divided into four groups. The Gensini score was used to gauge the severity of coronary artery stenosis, and inflammatory biomarkers were calculated. Results: The N/SI was substantially higher in the AMI group than those in other groups, and N/SI was an independent risk factor for AMI. In ROC analyses, N/SI had the highest area under curve (AUC) for AMI among those inflammatory biomarkers. N/SI was also proved to be related with Gensini score. Conclusion: N/SI was discovered to be a new and effective inflammatory biomarker for AMI and Gensini score.


Peoples' health is at risk from heart illnesses. The indicators in patients' blood are often used to evaluate the severity of diseases. The authors collected 263 subjects with heart disease and reviewed their clinical data. Their blood was drawn to measure the neutrophil-to-serum iron ratio, a crucial blood biomarker. In conclusion, the level of neutrophil-to-serum iron ratio in these patients was closely associated with the stage and severity of their disease.


Coronary Artery Disease , Coronary Stenosis , Myocardial Infarction , Humans , Neutrophils , Myocardial Infarction/diagnosis , Biomarkers , Iron , Coronary Artery Disease/complications
7.
Brain Lang ; 245: 105323, 2023 Oct.
Article En | MEDLINE | ID: mdl-37757503

Previous studies revealed structural differences in subcortical regions between monolinguals and bilinguals; however, whether the functional neuroplasticity of the subcortex is modulated by different bilingual experiences remains unclear. Here, we examined the effect of age of second language acquisition (AoA-L2) and usage of L2 (Usage-L2) on subcorto-cortical and intra-subcortical functional connectivity (FC) in bilinguals by using resting-state fMRI data. The relations between brain measurements and bilingual experiences were revealed by using multiple regression analysis. We found that increased AoA-L2 was mainly related to decreased subcortical FC involving the anterior thalamus, basal ganglia, and hippocampus. Increased Usage-L2 at home was mainly associated with decreased subcortical FC of the amygdala, globus pallidus, hippocampus, and nucleus accumbens. The FC of these subcortical regions displayed a positive relation with Usage-L2 in social settings. These findings reveal that bilingual experiences modulate the functional neuroplasticity of the subcortex in different ways.

8.
Cancers (Basel) ; 15(13)2023 Jun 27.
Article En | MEDLINE | ID: mdl-37444485

TAF participated in the progression of various cancers, including PA via the release of soluble factors. Exosomes belonged to extracellular vesicles, which were revealed as a crucial participator in intercellular communication. However, the expression pattern and effect of TAF-derived exosomes remained largely unknown in PA. In the present study, we performed in silico analysis based on public RNA-seq datasets to generate the circRNA/miRNA regulatory network. The qRT-PCR, Western blotting, RNA pull-down, and luciferase assay were performed to investigate the effect of TAF-derived exosomes. TAF-derived exosomal circDennd1b was significantly upregulated in PA and promoted the proliferation, migration, and invasion of PA cells via sponging miR-145-5p in PA cells. In addition, miR-145-5p directly regulated One Cut homeobox 2 (ONECUT2/OC2) expression and inhibited the promoting effect of ONECUT2 on PA. We further demonstrated that ONECUT2 transcriptionally increased fibroblast growth factor receptor 3 (FGFR3) expression, which further activates the mitogen-activated protein kinases (MAPK) pathway, thus promoting PA progression. Moreover, the suppression of TAFs by ABT-263 and ONECUT2 by CSRM617 inhibited the growth of PA. In conclusion, our study illustrated that TAF-derived exosomal circDennd1b affected PA progression via regulating ONECUT2 expression, which provides a potential therapeutic strategy against aggressive PA.

10.
Commun Biol ; 6(1): 587, 2023 06 01.
Article En | MEDLINE | ID: mdl-37264116

Sandalwood is one of the most expensive woods in the world and is well known for its long-lasting and distinctive aroma. In our study, chromosome-level genome assemblies for two sandalwood species (Santalum album and Santalum yasi) were constructed by integrating NGS short reads, RNA-seq, and Hi-C libraries with PacBio HiFi long reads. The S. album and S. yasi genomes were both assembled into 10 pseudochromosomes with a length of 229.59 Mb and 232.64 Mb, containing 21,673 and 22,816 predicted genes and a repeat content of 28.93% and 29.54% of the total genomes, respectively. Further analyses resolved a Santalum-specific whole-genome triplication event after divergence from ancestors of the Santalales lineage Malania, yet due to dramatic differences in transposon content, the Santalum genomes were only one-sixth the size of the Malania oleifera genome. Examination of RNA-seq data revealed a suite of genes that are differentially expressed in haustoria and might be involved in host hemiparasite interactions. The two genomes presented here not only provide an important comparative dataset for studying genome evolution in early diverging eudicots and hemiparasitic plants but will also hasten the application of conservation genomics for a lineage of trees recovering from decades of overexploitation.


Santalum , Sesquiterpenes , Santalum/genetics , Genomics , Trees , Chromosomes
11.
Materials (Basel) ; 16(12)2023 Jun 18.
Article En | MEDLINE | ID: mdl-37374638

The Portevin-Le Chatelier effect of Cu-2.0Be alloy was investigated using hot isothermal compression at varying strain rates (0.01-10 s-1) and temperature (903-1063 K). An Arrhenius-type constitutive equation was developed, and the average activation was determined. Both strain-rate-sensitive and temperature-sensitive serrations were identified. The stress-strain curve exhibited three types of serrations: type A at high strain rates, type B (mixed A + B) at medium strain rates, and type C at low strain rates. The serration mechanism is mainly affected by the interaction between the velocity of solute atom diffusion and movable dislocations. As the strain rate increases, the dislocations outpace the diffusion speed of the solute atoms, limiting their ability to effectively pin the dislocations, resulting in lower dislocation density and serration amplitude. Moreover, the dynamic phase transformation triggers the formation of nanoscale dispersive ß phases, which impede dislocation and cause a rapid increase in the effective stress required for unpinning, leading to the formation of mixed A + B serrations at 1 s-1.

12.
Mol Neurobiol ; 60(9): 4909-4923, 2023 Sep.
Article En | MEDLINE | ID: mdl-37191855

Human life and health are gravely threatened by brain diseases. The onset and progression of the illnesses are influenced by a variety of factors, including pathogenic causes, environmental factors, mental issues, etc. According to scientific studies, neuroinflammation and oxidative stress play a significant role in the development and incidence of brain diseases by producing pro-inflammatory cytokines and oxidative tissue damage to induce inflammation and apoptosis. Neuroinflammation, oxidative stress, and oxidative stress-related changes are inseparable factors in the etiology of several brain diseases. Numerous neurodegenerative diseases have undergone substantial research into the therapeutic alternatives that target oxidative stress, the function of oxidative stress, and the possible therapeutic use of antioxidants. Formerly, tBHQ is a synthetic phenolic antioxidant, which has been widely used as a food additive. According to recent researches, tBHQ can suppress the processes that lead to neuroinflammation and oxidative stress, which offers a fresh approach to treating brain diseases. In order to achieve the goal of decreasing inflammation and apoptosis, tBHQ is a specialized nuclear factor erythroid 2-related factor (Nrf2) activator that decreases oxidative stress and enhances antioxidant status by upregulating the Nrf2 gene and reducing nuclear factor kappa-B (NF-κB) activity. This article reviews the effects of tBHQ on neuroinflammation and oxidative stress in recent years and looks into how tBHQ inhibits neuroinflammation and oxidative stress through human, animal, and cell experiments to play a neuroprotective role in Alzheimer's disease (AD), stroke, depression, and Parkinson's disease (PD). It is anticipated that this article will be useful as a reference for upcoming research and the creation of drugs to treat brain diseases.


Brain Diseases , Neuroprotective Agents , Animals , Humans , Antioxidants/pharmacology , Antioxidants/therapeutic use , Antioxidants/metabolism , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , NF-E2-Related Factor 2/metabolism , Neuroinflammatory Diseases , Oxidative Stress , Hydroquinones/pharmacology , Hydroquinones/therapeutic use
13.
Cancers (Basel) ; 15(5)2023 Mar 06.
Article En | MEDLINE | ID: mdl-36900414

BACKGROUND: Pituitary adenoma (PA) bone invasion results in adverse outcomes, such as reduced rates of complete surgical resection and biochemical remission as well as increased recurrence rates, though few studies have been conducted. METHODS: We collected clinical specimens of PAs for staining and statistical analysis. Evaluation of the ability of PA cells to induce monocyte-osteoclast differentiation by coculturing PA cells with RAW264.7 in vitro. An in vivo model of bone invasion was used to simulate the process of bone erosion and evaluate the effect of different interventions in alleviating bone invasion. RESULTS: We found an overactivation of osteoclasts in bone-invasive PAs and concomitant aggregation of inflammatory factors. Furthermore, activation of PKCθ in PAs was established as a central signaling promoting PA bone invasion through the PKCθ/NF-κB/IL-1ß pathway. By inhibiting PKCθ and blocking IL1ß, we were able to significantly reverse bone invasion in an in vivo study. Meanwhile, we also found that celastrol, as a natural product, can obviously reduce the secretion of IL-1ß as well as alleviate the progression of bone invasion. CONCLUSIONS: By activating the PKCθ/NF-κB/IL-1ß pathway, pituitary tumors are able to induce monocyte-osteoclast differentiation in a paracrine manner and promote bone invasion, which can be alleviated by celastrol.

14.
Lupus ; 32(4): 538-548, 2023 Apr.
Article En | MEDLINE | ID: mdl-36916282

INTRODUCTION: Previous fMRI studies revealed that the abnormal functional connectivity (FC) was related to cognitive impairment in patients with SLE. However, it remains unclear how the disease severity affects the functional topological organization of the whole-brain network in SLE patients without neuropsychiatric symptoms (non-NPSLE). OBJECTIVE: We aim to examine the impairment of the whole-brain functional network in SLE patients without neuropsychiatric symptoms (non-NPSLE), which may improve the understanding of neural mechanism in SLE. METHODS: We acquired resting-state fMRI data from 32 non-NPSLE patients and 32 healthy controls (HC), constructed their whole-brain functional network, and then estimated the topological properties including global and nodal parameters by using graph theory. Meanwhile, we also investigated the differences in intra- and inter-network FC between the non-NPSLE patients and the HC. RESULTS: The non-NPSLE patients showed significantly lower clustering coefficient, global and local efficiency, but higher characteristic path length than the HC. The non-NPSLE patients had significantly lower nodal strength in two regions, ventromedial prefrontal cortex (vmPFC) and anterior PFC (aPFC) than the HC. We found the non-NPSLE patients had significantly lower intra-network FC within frontal-parietal network (FPN) and within default mode network (DMN), and significantly lower inter-network FC between DMN and FPN than the HC. The intra-network FC within DMN was negatively correlated with systemic lupus erythematosus disease activity index (SLEDAI). CONCLUSION: Abnormal whole-brain functional network properties and abnormal intra- and inter-network FC may be related to cognitive impairment and disease degree in the non-NPSLE patients. Our findings provide a network perspective to understand the neural mechanisms of SLE.


Cognitive Dysfunction , Lupus Erythematosus, Systemic , Humans , Lupus Erythematosus, Systemic/complications , Lupus Erythematosus, Systemic/diagnostic imaging , Brain/diagnostic imaging , Magnetic Resonance Imaging , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/etiology , Patient Acuity
15.
Nanoscale ; 15(16): 7430-7437, 2023 Apr 27.
Article En | MEDLINE | ID: mdl-37000575

NiCoP constructed on a conductive substrate can achieve efficient oxygen reduction reaction (ORR) catalytic activity. Herein, we report the in-situ growth of NiCoP on the surface of an MXene nanosheet (MXene@NiCoP). The MXene nanosheet accelerated the electron transfer and enhanced the surface activity of the NiCoP. Density functional theory calculations indicated that MXene@NiCoP possessed the advantages of a low overpotential and high OH* adsorption energy in the ORR process. MXene@NiCoP proved to be a highly active catalyst for the ORR with a half-wave potential of 0.71 V vs. RHE. The assembled single-chamber air-cathode microbial fuel cell obtained high electricity generation performance.

16.
Biomed Res Int ; 2023: 6082635, 2023.
Article En | MEDLINE | ID: mdl-36685667

Glycosylation is the most common posttranslational modification of proteins. Glycosyltransferase gene differential expression dictates the glycosylation model and is epigenetically regulating glioma progression and immunity. This study is aimed at identifying the glycosyltransferase gene signature to predict the prognosis and immune characteristics of glioma. The glycosyltransferase gene signature of glioma was identified in the TCGA database and validated in the CGGA database. Glioma patients were then divided into high- and low-risk groups based on risk scores to compare survival differences and predictive capacity. Subsequently, validation of glycosyltransferase gene signature merits by comparing with other signatures and utility in clinical judgment. The immune cell infiltration, immune pathways, and immune checkpoint expression level were also analyzed and compared in the high- and low-risk groups. Finally, the signature and its gene function were tested in our cohort and in vitro experiments. Eight glycosyltransferase genes were identified to establish the glycosyltransferase signature to predict the prognosis of glioma patients. The survival time was shorter in the high-risk group compared to the low-risk group based on glycosyltransferase signature and was confirmed in an independent external cohort. The glycosyltransferase signature displayed outstanding predictive capacity than other signatures in the TCGA and CGGA database cohorts. Furthermore, patients in the high-risk group were positively correlated with TAM infiltration, immune checkpoint expression level, and protumor immune pathways in TCGA cohorts. Validation of clinical tissue specimens revealed that the high-risk group was closely associated with infiltration of M2 TAMs. High-risk genes in the signature promote glioma proliferation, invasion, and macrophage recruitment in an in vitro validation of U87 and U251 cell lines. This carefully constructed that glycosyltransferase signature can predict the prognosis and immune profile of gliomas and help us evaluate subsequent macrophage-targeted therapies as well as other immune microenvironment modulation therapeutic strategies.


Glioma , Glycosyltransferases , Humans , Glycosyltransferases/genetics , Prognosis , Glycosylation , Phenotype , Glioma/genetics , Tumor Microenvironment/genetics
17.
Int J Biol Macromol ; 229: 168-180, 2023 Feb 28.
Article En | MEDLINE | ID: mdl-36587634

Nervous system diseases (NSDs) are characterized by a wide range of symptoms, a complex pathophysiology, an unclear etiology, a great deal of variation in treatment response, and lengthy therapy cycles, all of which pose considerable hurdles to clinical treatment. A traditional valuable medicine known as Ganoderma lucidum (GL) has a significant role to play in preserving health and treating diseases. Ganoderma lucidum polysaccharides (GLP) is one of the cardinal effective active ingredients of GL, which has a number of pharmacological actions, including liver protection, immune regulation, antioxidant activity, anticancer activity, antibacterial activity, and antiviral activity. Recently, studies on the structural characterization and biological functions of GLP were presented in this article to review the progress of researches about GLP on NSDs and summarize the potential mechanisms of action. These studies were anticipated to provide new research ideas for GLP as a novel promising neuroprotective agent and provide a reference for better development and utilization of GLP.


Ganoderma , Neuroprotective Agents , Reishi , Reishi/chemistry , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Polysaccharides/pharmacology , Polysaccharides/therapeutic use , Polysaccharides/chemistry , Antioxidants/pharmacology , Antioxidants/therapeutic use , Antioxidants/chemistry , Liver
18.
Life Sci ; 312: 121266, 2023 Jan 01.
Article En | MEDLINE | ID: mdl-36473542

AIMS: To explore the methylation status, function, and underlying mechanism of the imprinted gene Neuronatin (NNAT) in hepatocellular carcinoma (HCC) progression. MAIN METHODS: Immunohistochemistry (IHC) was performed to evaluate the expression of NNAT in HCC samples. Bisulfite genomic sequencing PCR (BSP) was applied to examine the methylation status of the NNAT promoter. In addition, colony formation, 5-Ethynyl-20-deoxyuridine (EdU) assays and subcutaneous xenograft nude models were used to explore the roles of NNAT in HCC cell proliferation. Furthermore, RNA-seq and phospho-specific protein microarray assays were conducted to illustrate the underlying mechanism by which NNAT regulates HCC progression. KEY FINDINGS: NNAT was obviously downregulated in HCC tissues, and its expression level was closely associated with tumor growth and patient prognosis. The downregulation of NNAT in HCC was induced by hypermethylation of CpG islands in the promoter region, and hypermethylation was correlated with overall survival of HCC. Moreover, the enforced expression of NNAT significantly inhibited HCC cell proliferation in vitro and in vivo. Transcriptome analysis showed that the alteration of NNAT expression was mainly related to dysregulation of the PI3K-Akt signaling pathway. Finally, phospho-specific antibody microarray detection further revealed that overexpressed NNAT can increase the phosphorylation levels of LKB1, Met, and elF4E and decrease the phosphorylation levels of PTEN, which are all involved in the PI3K-Akt signaling pathway. SIGNIFICANCE: Our research provides new insights into the epigenetic regulation of imprinted genes in tumorigenesis and implies that the imprinted gene NNAT may act as a prognostic biomarker and tumor suppressor in HCC.


Carcinoma, Hepatocellular , DNA Methylation , Gene Silencing , Liver Neoplasms , Animals , Humans , Mice , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Cell Proliferation/genetics , DNA Methylation/genetics , DNA Methylation/physiology , Epigenesis, Genetic/genetics , Epigenesis, Genetic/physiology , Gene Expression Regulation, Neoplastic , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Mice, Nude , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , Gene Silencing/physiology , Disease Models, Animal
19.
PLoS One ; 17(12): e0276403, 2022.
Article En | MEDLINE | ID: mdl-36480507

The "time-space compression" effect of high-speed rail (HSR) has effectively improved the accessibility of the cities and has had a profound impact on tourism. This study explores the impact of HSR on tourism development in cities along HSR lines from the perspective of transfer of transport advantages, then evaluates the impact of HSR on tourism development using panel data of 286 cities in China from 2005 to 2013 by the difference-in-differences (DID) method. The empirical results show that the opening of HSR has significantly increased the tourism revenue and tourist arrivals. These results are still holds after considering endogenous HSR lines placement, and by various robustness checks. Further analysis of nodal effect shows that node cities experienced greater growth in tourism revenue than non-node cities. The analysis of mechanism found that tourism development in node cities relied on hotel industry, while tourism development in non-node cities relied on scenic spots industry. The findings of this study validate the role of HSR as a catalyst for urban tourism development, and reveal the comparative advantages of tourism in different cities under the influence of HSR. This study has important reference value for the development of tourism industry policies in cities along and around HSR lines.


Tourism , Urban Renewal , China , Cities , Policy
20.
BMC Surg ; 22(1): 397, 2022 Nov 18.
Article En | MEDLINE | ID: mdl-36401263

PURPOSE: Optimal treatment of breast abscesses has been controversial. Herein, we report an innovative method for the operative treatment of lactational mammary abscesses. METHODS: Nineteen lactating patients diagnosed with breast abscesses were enrolled in the study, and abscess debridement and drainage were performed using an arthroscopic system. The clinical characteristics of the patients were recorded to evaluate the feasibility, efficacy, and cosmetic results of arthroscopic surgery for breast abscesses. RESULTS: All 19 patients were cured and did not relapse within the 6-month-follow-up period. One patient stopped breastfeeding due to breast leakage. All patients were satisfied with the postoperative appearance of the breast. CONCLUSION: Arthroscopic debridement and drainage are effective treatment methods for lactational breast abscesses, with a high cure rate, few complications, and satisfactory cosmetic outcomes.


Breast Diseases , Mastitis , Humans , Female , Lactation , Breast Feeding , Abscess/etiology , Breast Diseases/surgery , Breast Diseases/etiology , Mastitis/etiology , Mastitis/surgery
...