Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 11 de 11
1.
Natl Sci Rev ; 11(6): nwae114, 2024 Jun.
Article En | MEDLINE | ID: mdl-38712324

Although single-atom Cu sites exhibit high efficiency in CO2 hydrogenation to methanol, they are prone to forming Cu nanoparticles due to reduction and aggregation under reaction conditions, especially at high temperatures. Herein, single-atom Cu sites stabilized by adjacent Na+ ions have been successfully constructed within a metal-organic framework (MOF)-based catalyst, namely MOF-808-NaCu. It is found that the electrostatic interaction between the Na+ and Hδ- species plays a pivotal role in upholding the atomic dispersion of Cu in MOF-808-NaCu during CO2 hydrogenation, even at temperatures of up to 275°C. This exceptional stabilization effect endows the catalyst with excellent activity (306 g·kgcat-1·h-1), high selectivity to methanol (93%) and long-term stability at elevated reaction temperatures, far surpassing the counterpart in the absence of Na+ (denoted as MOF-808-Cu). This work develops an effective strategy for the fabrication of stable single-atom sites for advanced catalysis by creating an alkali-decorated microenvironment in close proximity.

2.
J Mol Graph Model ; 124: 108548, 2023 11.
Article En | MEDLINE | ID: mdl-37352722

mercury emission control from flue gas is a crucial issue for environment protection. Alumina is an important alkali metal oxide for mercury adsorption in particulate, meanwhile is the potential adsorbent for mercury removal. The cognition on mercury heterogeneous reaction mechanism with alumina in presence of hydrogen chloride is inadequate. In this work, the DFT calculation was applied to detect mercury's chlorides adsorption on α-Al2O3 (001) surface, the Bader charge analysis was used to estimate electron transfer and the transition state theory was used to clarify reaction pathway and energy barrier, besides, the kinetic analysis based on Gibbs free energy was conducted to study the impact of temperature on chemical reaction. The results show that Hg can be captured by weak chemisorption on α-Al2O3 (001) surface with the adsorption energy of -56.37 kJ/mol, HgCl, HgCl2 are intensively bonded on surface with adsorption energies of -276.90 kJ/mol and -231.87 kJ/mol, the surface unsaturated Al and O atoms are the active sites. Charge transfer and PDOS analysis prove that the forming of covalent bonding is responsible for Hg species adsorption. Two possible reaction pathways of Hg oxidization to HgCl2 are discussed, in which a smaller energy barrier of 0.1 eV implies the dominant pathway 1 via Eley-Rideal mechanism: two adsorbed HCl molecules dissociate on surface and then react with one Hg atom. High temperature can promote the reaction rate constants of pathway 1 and 2, but is only favorable for reducing energy barrier of pathway 2.


Mercury , Mercury/analysis , Mercury/chemistry , Adsorption , Kinetics , Oxides , Aluminum Oxide
3.
Adv Mater ; 35(15): e2210669, 2023 Apr.
Article En | MEDLINE | ID: mdl-36871151

Modulation of the local electronic structure and microenvironment of catalytic metal sites plays a critical role in electrocatalysis, yet remains a grand challenge. Herein, PdCu nanoparticles with an electron rich state are encapsulated into a sulfonate functionalized metal-organic framework, UiO-66-SO3 H (simply as UiO-S), and their microenvironment is further modulated by coating a hydrophobic polydimethylsiloxane (PDMS) layer, affording PdCu@UiO-S@PDMS. This resultant catalyst presents high activity toward the electrochemical nitrogen reduction reaction (NRR, Faraday efficiency: 13.16%, yield: 20.24 µg h-1 mgcat. -1 ), far superior to the corresponding counterparts. Experimental and theoretical results jointly demonstrate that the protonated and hydrophobic microenvironment supplies protons for the NRR yet suppresses the competitive hydrogen evolution reaction reaction, and electron-rich PdCu sites in PdCu@UiO-S@PDMS are favorable to formation of the N2 H* intermediate and reduce the energy barrier of NRR, thereby accounting for its good performance.

4.
J Am Chem Soc ; 144(37): 17075-17085, 2022 Sep 21.
Article En | MEDLINE | ID: mdl-36069726

Selective hydrogenation with high efficiency under ambient conditions remains a long-standing challenge. Here, a yolk-shell nanostructured catalyst, PdAg@ZIF-8, featuring plasmonic PdAg nanocages encompassed by a metal-organic framework (MOF, namely, ZIF-8) shell, has been rationally fabricated. PdAg@ZIF-8 achieves selective (97.5%) hydrogenation of nitrostyrene to vinylaniline with complete conversion at ambient temperature under visible light irradiation. The photothermal effect of Ag, together with the substrate enrichment effect of the catalyst, improves the Pd activity. The near-field enhancement effect from plasmonic Ag and optimized Pd electronic state by Ag alloying promote selective adsorption of the -NO2 group and therefore catalytic selectivity. Remarkably, the unique yolk-shell nanostructure not only facilitates access to PdAg cores and protects them from aggregation but also benefits substrate enrichment and preferential -NO2 adsorption under light irradiation, the latter two of which surpass the core-shell counterpart, giving rise to enhanced activity, selectivity, and recyclability.

5.
Adv Mater ; 34(42): e2205933, 2022 Oct.
Article En | MEDLINE | ID: mdl-35948462

The fabrication of intrinsic carbon defects is usually tangled with doping effects, and the identification of their unique roles in catalysis remains a tough task. Herein, a K+ -assisted synthetic strategy is developed to afford porous carbon (K-defect-C) with abundant intrinsic defects and complete elimination of heteroatom via direct pyrolysis of K+ -confined metal-organic frameworks (MOFs). Positron-annihilation lifetime spectroscopy, X-ray absorption fine structure measurement, and scanning transmission electron microscopy jointly illustrate the existence of abundant 12-vacancy-type carbon defects (V12 ) in K-defect-C. Remarkably, the K-defect-C achieves ultrahigh CO Faradaic efficiency (99%) at -0.45 V in CO2 electroreduction, far surpassing MOF-derived carbon without K+ etching. Theoretical calculations reveal that the V12 defects in K-defect-C favor CO2 adsorption and significantly accelerate the formation of the rate-determining COOH* intermediate, thereby promoting CO2 reduction. This work develops a novel strategy to generate intrinsic carbon defects and provides new insights into their critical role in catalysis.

6.
J Mol Model ; 28(4): 80, 2022 Mar 05.
Article En | MEDLINE | ID: mdl-35247076

The poor stability of organic-inorganic hybrid perovskites hinders its commercial application, which motivates a need for greater theoretical insight into its binding mechanism. To date, the binding mode of organic cation and anion inside organic-inorganic hybrid perovskites is still unclear and even contradictory. Therefore, in this work based on density functional theory (DFT), the binding mechanism between organic cation and anion was systematically investigated through electronic structure analysis including an examination of the electronic localization function (ELF), electron density difference (EDD), reduced density gradient (RDG), and energy decomposition analysis (EDA). The binding strength is mainly determined by Coulomb effect and orbital polarization. Based on the above analysis, a novel 2D linear regression descriptor that Eb = - 9.75Q2/R0 + 0.00053 V∙EHL - 6.11 with coefficient of determination R2 = 0.88 was proposed to evaluate the binding strength (the units for Q, R0, V, and EHL are |e|, Å, bohr3, and eV, respectively), revealing that larger Coulomb effect (Q2/R0), smaller volume of perovskite (V), and narrower energy difference (EHL) between the lowest unoccupied molecular orbital (LUMO) of organic cation and the highest occupied molecular orbital (HOMO) of anion correspond to the stronger binding strength, which guides the design of highly stable organic-inorganic hybrid perovskites.

7.
Adv Mater ; 34(20): e2110123, 2022 May.
Article En | MEDLINE | ID: mdl-35291046

Catalytic oxidation of NO and Hg0 is a crucial step to eliminate multiple pollutants from emissions from coal-fired power plants. However, traditional catalysts exhibit low catalytic activity and poor sulfur resistance due to low activation ability and poor adsorption selectivity. Herein, a single-atom Fe decorated N-doped carbon catalyst (Fe1 -N4 -C), with abundant Fe1 -N4 sites, based on a Fe-doped metal-organic framework is developed to oxidize NO and Hg0 . The results demonstrate that the Fe1 -N4 -C has ultrahigh catalytic activity for oxidizing NO and Hg0 at low and room temperature. More importantly, Fe1 -N4 -C exhibits robust sulfur resistance as it preferably adsorbs reactants over sulfur oxides, which has never been achieved before with traditional catalysts. Furthermore, SO2 boosts the catalytic oxidation of NO over Fe1 -N4 -C through accelerating the circulation of active sites. Density functional theory calculations reveal that the Fe1 -N4 active sites result in a low energy barrier and high adsorption selectivity, providing detailed molecular-level understanding for its excellent catalytic performance. This is the first report on NO and Hg0 oxidation over single-atom catalysts with strong sulfur tolerance. The outcomes demonstrate that single-atom catalysts are promising candidates for catalytic oxidation of NO and Hg0 enabling cleaner coal-fired power plant operations.

8.
J Hazard Mater ; 423(Pt B): 127198, 2022 02 05.
Article En | MEDLINE | ID: mdl-34844344

The mechanochemical (MC) brominated fly ash is a cost-effective mercury removal adsorbent, in which unburned carbon (UBC) plays an important role. The MC bromination mechanism of UBC and its mercury removal mechanism were completely studied through the density functional theory (DFT) method. Various defects on zigzag and armchair edge models were constructed at the micro-scale to simulate the MC effect on UBC at the macro-scale. The results reveal that the intact surface of zigzag and armchair can be constructed into abundant defective structures by MC action. Compared with the complete surface, bromine is more favorable to bind on the defective surface, resulting in more and stronger C-Br covalent bonds and more active sites. These defective structures also have a promoting effect on mercury adsorption. For the bromine-embedded structure, although the appropriate defective structure accounts for less, it not only can promote the adsorption and oxidation of mercury by improving adsorption ability or decreasing the oxidation energy barrier but is also easier to generate. Due to defect types formed by MC interaction on the UBC surface are much more diverse and complex, this study provides the theoretical basis for further research.


Coal Ash , Mercury , Adsorption , Carbon , Halogenation
9.
Phys Chem Chem Phys ; 23(19): 11548-11556, 2021 May 19.
Article En | MEDLINE | ID: mdl-33977993

The high efficiency of organic-inorganic hybrid perovskites has attracted the attention of many scholars all over the world, the chemical formula of which is ABX3, where A is an organic cation, B is a metal cation, and X is a halogen ion. In addition, the micro-mechanism behind the efficient photoelectric conversion needs more in-depth exploration. Therefore, in this work, based on time-dependent density functional theory (TD-DFT), the electron transfer mechanism from the ground state to the first singlet excited state was systematically investigated by electron and hole analysis and an inter-fragment charge transfer amount method (IFCT). In this work, we optimized and analyzed 99 different perovskite cluster configurations, where A sites are CH3NH3+ (MA+), NH2CHNH2+ (FA+), CH3CH2NH3+ (EA+), NH2CHOH+ (JA+), NH3OH+ (BA+), N(CH3)4+ (DA+), CH3CH2CH2NH3+ (KB+), CH3CH2CH2CH2NH3+ (KC+), C3N2H5+ (RA+), CH(CH3)2+ (TA+), and CH3NH(CH3)2+ (UA+), B sites are Ge2+, Sn2+ and Pb2+, and X sites are Cl-, Br- and I-. According to the analysis of a series of perovskite clusters of the hole-electron distribution, the distribution is mainly concentrated on BX, and electrons and holes are respectively distributed on B and X sites. The exciton binding energy decreases when the metal element changes from Ge to Pb and the halogen element changes from Cl to I. A radar chart including the exciton binding energy, excited energy, amount of net charge transfer, electron and hole overlap index, distance between the centroid of holes and electrons, and the hole and electron separation index was proposed to intuitively describe the electron transmission characteristics of perovskites. Based on that, a comprehensive score index was innovatively proposed to evaluate the photoelectric property of perovskites, providing foundational guidance for the design of high-efficiency organic-inorganic hybrid perovskites.

10.
Chem Commun (Camb) ; 56(78): 11657-11660, 2020 Oct 01.
Article En | MEDLINE | ID: mdl-33000810

An accurate prediction model of catalytic activity is crucial for both structure design and activity regulation of catalysts. Here, a kinetic activity model is developed to study the activity of single-atom catalysts (SACs) in catalytic oxidation of sulfur dioxide. Using the adsorption energy of the oxygen atom as a descriptor, the catalytic activities of 132 SACs were explored. Our results indicate the highest activity when the adsorption energy of oxygen equals -0.83 eV. In detail, single-atom Pd catalyst exhibits the best catalytic activity with an energy barrier of 0.60 eV. Most importantly, this work provides a new insight for developing a highly accurate and robust prediction model for catalytic activity.

11.
J Mol Model ; 25(5): 142, 2019 May 01.
Article En | MEDLINE | ID: mdl-31044271

The release of mercury (Hg) species from coal-fired power plants has attracted increasing concern, and the development of an efficient and economical method to control Hg species emission from such plants is urgently required. Activated carbon is a compelling sorbent for the elimination of mercury species from flue gas, but the adsorption mechanism of mercuric oxide clusters on carbonaceous materials is still unclear. Therefore, the adsorption characteristics of mercuric oxide clusters on activated carbon were investigated systematically utilizing density functional theory in this work. It was found that mercuric oxide clusters are chemically adsorbed on activated carbon, and that the pre-adsorption of SO2 on the activated carbon leads to complicated mercuric oxide cluster adsorption behavior due to an irregular distribution of the electrostatic potential on the surface of the carbonaceous material. Thermodynamic analysis indicated that the adsorption energy of SO2 on activated carbon is lower than that of mercuric oxide clusters in the temperature range 298.15-1000 K. Competitive adsorption analysis suggested that mercuric oxide clusters are at least 108.11 times more likely than SO2 to be adsorbed on activated carbon. Graphical abstract Competitive adsorption between SO2 and HgO clusters on activated carbon surface in flue gas of coal-fired power plants.

...