Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Physiol ; 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38781292

RESUMEN

Plant senescence is a highly regulated developmental program crucial for nutrient reallocation and stress adaptation in response to developmental and environmental cues. Stress-induced and age-dependent natural senescence share both overlapping and distinct molecular responses and regulatory schemes. Previously, we have utilized a carbon-deprivation (C-deprivation) senescence assay using Arabidopsis (Arabidopsis thaliana) seedlings to investigate senescence regulation. Here we conducted a comprehensive time-resolved transcriptomic analysis of Arabidopsis wild type seedlings subjected to C-deprivation treatment at multiple time points, unveiling substantial temporal changes and distinct gene expression patterns. Moreover, we identified ALTERED MERISTEM PROGRAM 1 (AMP1), encoding an endoplasmic reticulum protein, as a potential regulator of senescence based on its expression profile. By characterizing loss-of-function alleles and overexpression lines of AMP1, we confirmed its role as a negative regulator of plant senescence. Genetic analyses further revealed a synergistic interaction between AMP1 and the autophagy pathway in regulating senescence. Additionally, we discovered a functional association between AMP1 and the endosome-localized ABNORMAL SHOOT3 (ABS3)-mediated senescence pathway and positioned key senescence-promoting transcription factors downstream of AMP1. Overall, our findings shed light on the molecular intricacies of transcriptome reprogramming during C-deprivation-induced senescence and the functional interplay among endomembrane compartments in controlling plant senescence.

2.
New Phytol ; 240(4): 1433-1448, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37668229

RESUMEN

The transcription of photosynthesis genes in chloroplasts is largely mediated by the plastid-encoded RNA polymerase (PEP), which resembles prokaryotic-type RNA polymerases, but with plant-specific accessory subunits known as plastid transcriptionally active chromosome proteins (pTACs) or PEP-associated proteins (PAPs). However, whether additional factors are involved in the biogenesis of PEP complexes remains unknown. Here, we investigated the function of an essential gene, PALE CRESS (PAC), in the accumulation of PEP complexes in chloroplasts. We established that an Arabidopsis leaf variegation mutant, variegated 6-1 (var6-1), is a hypomorphic allele of PAC. Unexpectedly, we revealed that a fraction of VAR6/PAC is associated with thylakoid membranes, where it interacts with PEP complexes. The accumulation of PEP complexes is defective in both var6-1 and the null allele var6-2. Further protein interaction assays confirmed that VAR6/PAC interacts directly with the PAP2/pTAC2 and PAP3/pTAC10 subunits of PEP complexes. Moreover, we generated viable hypomorphic alleles of the essential gene PAP2/pTAC2, and revealed a genetic interaction between PAC and PAP2/pTAC2 in photosynthesis gene expression and PEP complex accumulation. Our findings establish that VAR6/PAC affects PEP complex accumulation through interactions with PAP2/pTAC2 and PAP3/pTAC10, and provide new insights into the accumulation of PEP and chloroplast development.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Brassicaceae , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Brassicaceae/metabolismo , Proteínas de Cloroplastos/metabolismo , Cloroplastos/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , Regulación de la Expresión Génica de las Plantas , Mutación/genética , Plastidios/genética , Factores de Transcripción/metabolismo
3.
J Exp Bot ; 74(18): 5472-5486, 2023 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-37453102

RESUMEN

Senescence is the final stage of plant growth and development, and is a highly regulated process at the molecular, cellular, and organismal levels. When triggered by age, hormonal, or environmental cues, plants actively adjust their metabolism and gene expression to execute the progression of senescence. Regulation of senescence is vital for the reallocation of nutrients to sink organs, to ensure reproductive success and adaptations to stresses. Identification and characterization of hallmarks of leaf senescence are of great importance for understanding the molecular regulatory mechanisms of plant senescence, and breeding future crops with more desirable senescence traits. Tremendous progress has been made in elucidating the genetic network underpinning the metabolic and cellular changes in leaf senescence. In this review, we focus on three hallmarks of leaf senescence - chlorophyll and chloroplast degradation, loss of proteostasis, and activation of senescence-associated genes (SAGs), and discuss recent findings of the molecular players and the crosstalk of senescence pathways.


Asunto(s)
Redes Reguladoras de Genes , Senescencia de la Planta , Hojas de la Planta/metabolismo , Fitomejoramiento , Plantas/genética , Regulación de la Expresión Génica de las Plantas , Senescencia Celular/genética
4.
Molecules ; 28(10)2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-37241831

RESUMEN

Antibiotics are administered to livestock at subtherapeutic levels to promote growth, and their degradation in manure is slow. High antibiotic concentrations can inhibit bacterial activity. Livestock excretes antibiotics via feces and urine, leading to their accumulation in manure. This can result in the propagation of antibiotic-resistant bacteria and antibiotic resistance genes (ARGs). Anaerobic digestion (AD) manure treatment technologies are gaining popularity due to their ability to mitigate organic matter pollution and pathogens, and produce methane-rich biogas as renewable energy. AD is influenced by multiple factors, including temperature, pH, total solids (TS), substrate type, organic loading rate (OLR), hydraulic retention time (HRT), intermediate substrates, and pre-treatments. Temperature plays a critical role, and thermophilic AD has been found to be more effective in reducing ARGs in manure compared to mesophilic AD, as evidenced by numerous studies. This review paper investigates the fundamental principles of process parameters affecting the degradation of ARGs in anaerobic digestion. The management of waste to mitigate antibiotic resistance in microorganisms presents a significant challenge, highlighting the need for effective waste management technologies. As the prevalence of antibiotic resistance continues to rise, urgent implementation of effective treatment strategies is necessary.


Asunto(s)
Ganado , Estiércol , Animales , Estiércol/microbiología , Ganado/genética , Ganado/metabolismo , Anaerobiosis , Antibacterianos/farmacología , Antibacterianos/metabolismo , Bacterias/metabolismo , Genes Bacterianos
5.
Bioresour Technol ; 382: 129163, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37224888

RESUMEN

Microbial inoculation was an effective way to improve product quality of composting and solve traditional composting shortage. However, the effect mechanism of microbial inoculation on compost microorganisms remains unclear. Here, Shifts in bacterial community, metabolic function and co-occurrence network during the primary and secondary fermentation stages of bio-compost inoculated with effective microorganisms (EM) agent were analyzed by high-throughput sequencing and network analysis. Microbial inoculation promoted organic carbon transformation in early stage of secondary fermentation (days 27 to 31). The beneficial biocontrol bacteria were main dominant genera at the second fermentation stage. Microbial inoculation can be good for the survival of beneficial bacteria. Inoculation with microbes promoted amino acid, carbohydrate and lipid metabolism, and inhibited energy metabolism and citrate cycle (TCA cycle). Microbial inoculation could enhance complexity of bacterial network and enhance mutual cooperation among bacteria during composting.


Asunto(s)
Compostaje , Fermentación , Bacterias/metabolismo , Suelo , Estiércol/microbiología
6.
BMC Cancer ; 23(1): 266, 2023 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-36959566

RESUMEN

BACKGROUND: Our previous studies have identified CA916798 as a chemotherapy resistance-associated gene in lung cancer. However, the histopathological relevance and biological function of CA916798 in lung adenocarcinoma (LUAD) remains to be delineated. In this study, we further investigated and explored the clinical and biological significance of CA916798 in LUAD. METHODS: The relationship between CA916798 and clinical features of LUAD was analyzed by tissue array and online database. CCK8 and flow cytometry were used to measure cell proliferation and cell cycle of LUAD after knockdown of CA916798 gene. qRT-PCR and western blotting were used to detect the changes of cell cycle-related genes after knockdown or overexpression of CA916798. The tumorigenesis of LUAD cells was evaluated with or without engineering manipulation of CA916798 gene expression. Response to Gefitinib was evaluated using LUAD cells with forced expression or knockdown of CA916798. RESULTS: The analysis on LUAD samples showed that high expression of CA916798 was tightly correlated with pathological progression and poor prognosis of LUAD patients. A critical methylation site in promoter region of CA916798 gene was identified to be related with CA916798 gene expression. Forced expression of CA916798 relieved the inhibitory effects of WEE1 on CDK1 and facilitated cell cycle progression from G2 phase to M phase. However, knockdown of CA916798 enhanced WEE1 function and resulted in G2/M phase arrest. Consistently, chemical suppression of CDK1 dramatically inhibited G2/M phase transition in LUAD cells with high expression of CA916798. Finally, we found that CA916798 was highly expressed in Gefitinib-resistant LUAD cells. Exogenous expression of CA916798 was sufficient to endow Gefitinib resistance with tumor cells, but interference of CA916798 expression largely rescued response of tumor cells to Gefitinib. CONCLUSIONS: CA916798 played oncogenic roles and was correlated with the development of Gefitinib resistance in LUAD cells. Therefore, CA916798 could be considered as a promising prognostic marker and a therapeutic target for LUAD.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Humanos , Gefitinib/farmacología , Gefitinib/uso terapéutico , Adenocarcinoma del Pulmón/tratamiento farmacológico , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Western Blotting , Proliferación Celular , Pronóstico , Regulación Neoplásica de la Expresión Génica , Línea Celular Tumoral
7.
Plant Signal Behav ; 18(1): 2171360, 2023 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-36720201

RESUMEN

Plant microtubules (MTs) form highly dynamic and distinct arrays throughout the cell cycle and are essential for cell and organ morphogenesis. A plethora of microtubule associated-proteins (MAPs), both conserved and plant-specific, ensure the dynamic response of MTs to internal and external cues. The MAP215 family MT polymerase/nucleation factor and the MT severing enzyme katanin are among the most conserved MAPs in eukaryotes. Recent studies have revealed unexpected functional and physical interactions between MICROTUBULE ORGANIZATION 1 (MOR1), the Arabidopsis homolog of MAP215, and KATANIN 1 (KTN1), the catalytic subunit of katanin. In this minireview, we provide a short overview on current understanding of the functions and regulations of MOR1 and katanin in cell morphogenesis and plant growth and development.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Katanina/genética , Katanina/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Plantas/metabolismo
8.
J Biol Chem ; 298(10): 102489, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36113581

RESUMEN

The establishment of photosynthetic protein complexes during chloroplast development requires the influx of a large number of chloroplast proteins that are encoded by the nuclear genome, which is critical for cytosol and chloroplast protein homeostasis and chloroplast development. However, the mechanisms regulating this process are still not well understood in higher plants. Here, we report the isolation and characterization of the pale green Arabidopsis pga1-1 mutant, which is defective in chloroplast development and chloroplast protein accumulation. Using genetic and biochemical evidence, we reveal that PGA1 encodes AtFtsH12, a chloroplast envelope-localized protein of the FtsH family proteins. We determined a G703R mutation in the GAD motif of the conserved ATPase domain renders the pga1-1 a viable hypomorphic allele of the essential gene AtFtsH12. In de-etiolation assays, we showed that the accumulation of photosynthetic proteins and the expression of photosynthetic genes were impaired in pga1-1. Using the FNRctp-GFP and pTAC2-GFP reporters, we demonstrated that AtFtsH12 was required for the accumulation of chloroplast proteins in vivo. Interestingly, we identified an increase in expression of the mutant AtFtsH12 gene in pga1-1, suggesting a feedback regulation. Moreover, we found that cytosolic and chloroplast proteostasis responses were triggered in pga1-1. Together, taking advantage of the novel pga1-1 mutant, we demonstrate the function of AtFtsH12 in chloroplast protein homeostasis and chloroplast development.


Asunto(s)
Adenosina Trifosfatasas , Proteínas de Arabidopsis , Arabidopsis , Proteínas de Cloroplastos , Proteostasis , Adenosina Trifosfatasas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Cloroplastos/genética , Proteínas de Cloroplastos/metabolismo , Cloroplastos/metabolismo , Citosol/metabolismo , Regulación de la Expresión Génica de las Plantas , Mutación , Proteostasis/genética
9.
Plant Sci ; 324: 111420, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35985415

RESUMEN

A plethora of microtubule-associated proteins (MAPs) modulate the dynamics of microtubules (MTs) to ensure the proper elaboration of developmental programs in plants. Among the plant-specific MAPs are the IQ67 domain (IQD) family proteins. Despite the great progress in elucidating IQD protein functions, the majority of IQD proteins, especially IQDs in crop species, remain to be functionally explored. In this study, we identified 78 putative IQD family genes in the genome of hexaploid wheat (Triticum aestivum). Phylogenetic analysis of wheat and Arabidopsis IQDs supports the previous notion that the expansion of the IQD family coincides with plant terrestrialization. Further characterization of one TaIQD, TaIQD3D-6, revealed that TaIQD3D-6 directly binds to MTs and free tubulins in vitro and is associated with cortical MTs in interphase cells in vivo. Overexpressing TaIQD3D-6 in Arabidopsis leads to a spectrum of phenotypes that are indicative of perturbed MT homeostasis, including spiral growth, hypersensitivity to MT-destabilizing drugs, defects in cell morphogenesis, and altered organization of cMT arrays. Finally, we determined that TaIQD3D-6-GFP localizes to the expanding cell plate during cytokinesis and the overexpression of TaIQD3D-6 interferes with asymmetric cell division in the stomatal lineage in Arabidopsis. In summary, our findings establish that TaIQD3D-6 is a MAP that regulates plant cell and organ morphogenesis and provide new insights into the functions of crop IQD proteins.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Morfogénesis , Filogenia , Plantas/metabolismo , Triticum/genética , Triticum/metabolismo
10.
EMBO J ; 41(19): e110988, 2022 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-35942625

RESUMEN

One of the hallmarks of plant senescence is the global transcriptional reprogramming coordinated by a plethora of transcription factors (TFs). However, mechanisms underlying the interactions between different TFs in modulating senescence remain obscure. Previously, we discovered that plant ABS3 subfamily MATE transporter genes regulate senescence and senescence-associated transcriptional changes. In a genetic screen for mutants suppressing the accelerated senescence phenotype of the gain-of-function mutant abs3-1D, AUXIN RESPONSE FACTOR 2 (ARF2) and PHYTOCHROME-INTERACTING FACTOR 5 (PIF5) were identified as key TFs responsible for transcriptional regulation in the ABS3-mediated senescence pathway. ARF2 and PIF5 (as well as PIF4) interact directly and function interdependently to promote senescence, and they share common target genes such as key senescence promoting genes ORESARA 1 (ORE1) and STAY-GREEN 1 (SGR1) in the ABS3-mediated senescence pathway. In addition, we discovered reciprocal regulation between ABS3-subfamily MATEs and the ARF2 and PIF5/4 TFs. Taken together, our findings reveal a regulatory paradigm in which the ARF2-PIF5/4 functional module facilitates the transcriptional reprogramming in the ABS3-mediated senescence pathway.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Fitocromo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factor V/genética , Factor V/metabolismo , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/metabolismo , Fitocromo/genética , Senescencia de la Planta , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
11.
Plant Cell Environ ; 45(8): 2395-2409, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35610189

RESUMEN

Thylakoid FtsH complex participates in PSII repair cycle during high light-induced photoinhibition. The Arabidopsis yellow variegated2 (var2) mutants are defective in the VAR2/AtFtsH2 subunit of thylakoid FtsH complex. Taking advantage of the var2 leaf variegation phenotype, dissections of genetic enhancer loci have yielded novel paradigms in understanding functions of thylakoid FtsH complex. Here, we report the isolation of a new var2 enhancer, enhancer of variegation2-1 (evr2-1). We confirmed that EVR2 encodes a chloroplast protein that was known as BALANCE OF CHLOROPHYLL METABOLISM 1 (BCM1), or CHLOROPHYLL BIOSYNTHETIC DEFECT 1 (CBD1). We showed that EVR2/BCM1/CBD1 was involved in the oligomerization of photosystem I complexes. Genetic assays indicated that general defects in chlorophyll biosynthesis and the accumulation of photosynthetic complexes do not necessarily enhance var2 leaf variegation. In addition, we found that VAR2/AtFtsH2 is required for the accumulation of photosynthetic proteins during de-etiolation. Moreover, we identified PSII core proteins D1 and PsbC as potential EVR2-associated proteins using Co-IP/MS. Furthermore, the accumulation of D1 protein was greatly compromised in the var2-5 evr2-1 double mutant during de-etiolation. Together, our findings reveal a functional link between VAR2/AtFtsH2 and EVR2/BCM1/CBD1 in regulating chloroplast development and the accumulation of PSII reaction centre D1 protein during de-etiolation.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteasas ATP-Dependientes/genética , Proteasas ATP-Dependientes/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Clorofila/metabolismo , Cloroplastos/metabolismo , Etiolado , Proteínas de la Membrana/metabolismo , Mutación/genética , Complejo de Proteína del Fotosistema II/metabolismo
12.
Plant Cell ; 34(8): 3006-3027, 2022 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-35579372

RESUMEN

The MAP215 family of microtubule (MT) polymerase/nucleation factors and the MT severing enzyme katanin are widely conserved MT-associated proteins (MAPs) across the plant and animal kingdoms. However, how these two essential MAPs coordinate to regulate plant MT dynamics and development remains unknown. Here, we identified novel hypomorphic alleles of MICROTUBULE ORGANIZATION 1 (MOR1), encoding the Arabidopsis thaliana homolog of MAP215, in genetic screens for mutants oversensitive to the MT-destabilizing drug propyzamide. Live imaging in planta revealed that MOR1-green fluorescent protein predominantly tracks the plus-ends of cortical MTs (cMTs) in interphase cells and labels preprophase band, spindle and phragmoplast MT arrays in dividing cells. Remarkably, MOR1 and KATANIN 1 (KTN1), the p60 subunit of Arabidopsis katanin, act synergistically to control the proper formation of plant-specific MT arrays, and consequently, cell division and anisotropic cell expansion. Moreover, MOR1 physically interacts with KTN1 and promotes KTN1-mediated severing of cMTs. Our work establishes the Arabidopsis MOR1-KTN1 interaction as a central functional node dictating MT dynamics and plant growth and development.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Animales , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , División Celular , Katanina/genética , Katanina/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo
13.
Microorganisms ; 10(2)2022 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-35208916

RESUMEN

The influence of bio-compost on the diversity, composition and structure of soil microbial communities is less understood. Here, Illumina MiSeq sequencing and a network analysis were used to comprehensively characterize the effects of 25 years of bio-compost application on the microbial diversity of soil and community composition. High dosages of bio-compost significantly increased the bacterial and fungal richness. The compositions of bacterial and fungal communities were significantly altered by bio-compost addition. Bio-compost addition enriched the relative abundance of beneficial microorganisms (such as Sphingomonas, Acidibacter, Nocardioides, etc.) and reduced the relative abundance of harmful microorganisms (such as Stachybotrys and Aspergillus). Electrical conductivity, soil organic matter and total phosphorus were the key factors in shaping soil microbial community composition. The bacterial network was more complex than fungal network, and bacteria were more sensitive to changes in environmental factors than fungi. Positive interactions dominated both the bacterial and fungal networks, with stronger positive interactions found in the bacterial network. Functional prediction suggested that bio-composts altered the soil bacterial-community metabolic function with respect to carbon, nitrogen and phosphorus cycles and fungal community trophic modes. In conclusion, suitable bio-compost addition is beneficial to the improvement of soil health and crop quality and therefore the sustainability of agriculture.

14.
J Biol Chem ; 297(1): 100849, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34058197

RESUMEN

The dynamic responses of microtubules (MTs) to internal and external signals are modulated by a plethora of microtubule-associated proteins (MAPs). In higher plants, many plant-specific MAPs have emerged during evolution as advantageous to their sessile lifestyle. Some members of the IQ67 domain (IQD) protein family have been shown to be plant-specific MAPs. However, the mechanisms of interaction between IQD proteins and MTs remain elusive. Here we demonstrate that the domain of unknown function 4005 (DUF4005) of the Arabidopsis IQD family protein ABS6/AtIQD16 is a novel MT-binding domain. Cosedimentation assays showed that the DUF4005 domain binds directly to MTs in vitro. GFP-labeled DUF4005 also decorates all types of MT arrays tested in vivo. Furthermore, we showed that a conserved stretch of 15 amino acid residues within the DUF4005 domain, which shares sequence similarity with the C-terminal MT-binding domain of human MAP Kif18A, is required for the binding to MTs. Transgenic lines overexpressing the DUF4005 domain displayed a spectrum of developmental defects, including spiral growth and stunted growth at the organismal level. At the cellular level, DUF4005 overexpression caused defects in epidermal pavement cell and trichome morphogenesis, as well as abnormal anisotropic cell elongation in the hypocotyls of dark-grown seedlings. These data establish that the DUF4005 domain of ABS6/AtIQD16 is a new MT-binding domain, overexpression of which perturbs MT homeostasis in plants. Our findings provide new insights into the MT-binding mechanisms of plant IQD proteins.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas Asociadas a Microtúbulos/genética , Microtúbulos/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/química , Señalización del Calcio/genética , Segregación Cromosómica/genética , Cinesinas/genética , Proteínas Asociadas a Microtúbulos/química , Microtúbulos/química , Morfogénesis/genética , Plantas Modificadas Genéticamente/genética , Unión Proteica/genética , Dominios Proteicos/genética
15.
Phytochemistry ; 183: 112618, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33352359

RESUMEN

Thirteen undescribed dammarane triterpenoid saponins (cypaliurusides A-M), including eleven seco-dammarane type triterpenoids, were isolated from Cyclocarya paliurus. Each of these compounds has the unique feature of having a monosaccharide attached to C-11, rather than C-12, compared to the same type of saponins found in this plant. The structures of them were determined by comprehensive analysis of 1D, 2D NMR and HRESIMS data. Cypaliuruside J showed significant α-glucosidase inhibitory effect with IC50 value of 2.22 ± 0.13 µM. In addition, Cypaliurusides F and K exhibited modest cytotoxic activities against selected human cancer cell lines in vitro, with IC50 values ranging from 4.61 ± 0.13 to 15.23 ± 3.88 µM.


Asunto(s)
Juglandaceae , Saponinas , Triterpenos , Hojas de la Planta , Saponinas/farmacología , Triterpenos/farmacología , Damaranos
16.
J Integr Plant Biol ; 63(4): 646-661, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32761943

RESUMEN

Plant interphase cortical microtubules (cMTs) mediate anisotropic cell expansion in response to environmental and developmental cues. In Arabidopsis thaliana, KATANIN 1 (KTN1), the p60 catalytic subunit of the conserved MT-severing enzyme katanin, is essential for cMT ordering and anisotropic cell expansion. However, the regulation of KTN1-mediated cMT severing and ordering remains unclear. In this work, we report that the Arabidopsis IQ67 DOMAIN (IQD) family gene ABNORMAL SHOOT 6 (ABS6) encodes a MT-associated protein. Overexpression of ABS6 leads to elongated cotyledons, directional pavement cell expansion, and highly ordered transverse cMT arrays. Genetic suppressor analysis revealed that ABS6-mediated cMT ordering is dependent on KTN1 and SHADE AVOIDANCE 4 (SAV4). Live imaging of cMT dynamics showed that both ABS6 and SAV4 function as positive regulators of cMT severing. Furthermore, ABS6 directly interacts with KTN1 and SAV4 and promotes their recruitment to the cMTs. Finally, analysis of loss-of-function mutant combinations showed that ABS6, SAV4, and KTN1 work together to ensure the robust ethylene response in the apical hook of dark-grown seedlings. Together, our findings establish ABS6 and SAV4 as positive regulators of cMT severing and ordering, and highlight the role of cMT dynamics in fine-tuning differential growth in plants.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Katanina/metabolismo , Microtúbulos/metabolismo , Proteínas de Arabidopsis/genética , Katanina/genética , Microtúbulos/genética
17.
Plant Physiol ; 184(1): 345-358, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32611785

RESUMEN

The leaf margin is a fascinating feature of leaf morphology, contributing to the incredible diversity of leaf shapes and forms. As a central regulator of plant organ separation and margin development, CUP-SHAPED COTYLEDON2 (CUC2), a NAM, ATAF1, 2, CUC2 (NAC)-family transcription factor, governs the extent of serrations along the leaf margin. CUC2 activity is tightly regulated at transcriptional and posttranscriptional levels. However, the molecular mechanism that controls CUC2 transcription during leaf development has not been fully elucidated. Here we report that Arabidopsis (Arabidopsis thaliana) NGATHA-LIKE1 (NGAL1) to NGAL3, which are three related B3 family transcription factors, act as negative regulators of leaf margin serration formation. Over-expression of NGALs led to "cup-shaped" cotyledons and smooth leaf margins, whereas the triple loss-of-function mutant ngaltri exhibited more serrated leaves than the wild type. RNA-sequencing analyses revealed that the expression levels of a number of transcription factor genes involved in leaf development are regulated by NGALs, including CUC2 Comparative transcriptome analyses further uncovered a significant overlap between NGAL- and CUC2-regulated genes. Moreover, genetic analyses using various combinations of gain- and loss-of-function mutants of NGALs and CUC2 confirmed that CUC2 acts downstream of NGALs in promoting the formation of leaf-margin serrations. Finally, we demonstrate that NGAL1 directly binds to the CUC2 promoter causing repressed CUC2 expression. In summary, direct CUC2 transcriptional repression by NGAL1 characterizes a further regulatory module controlling leaf margin development.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Plantas Modificadas Genéticamente/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Plantas Modificadas Genéticamente/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
18.
J Biol Chem ; 295(4): 1036-1046, 2020 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-31836664

RESUMEN

Chloroplast development and photosynthesis require the proper assembly and turnover of photosynthetic protein complexes. Chloroplasts harbor a repertoire of proteases to facilitate proteostasis and development. We have previously used an Arabidopsis leaf variegation mutant, yellow variegated2 (var2), defective in thylakoid FtsH protease complexes, as a tool to dissect the genetic regulation of chloroplast development. Here, we report a new genetic enhancer mutant of var2, enhancer of variegation3-1 (evr3-1). We confirm that EVR3 encodes a chloroplast metalloprotease, reported previously as ethylene-dependent gravitropism-deficient and yellow-green1 (EGY1)/ammonium overly sensitive1 (AMOS1). We observed that mutations in EVR3/EGY1/AMOS1 cause more severe leaf variegation in var2-5 and synthetic lethality in var2-4 Using a modified blue-native PAGE system, we reveal abnormal accumulations of photosystem I, photosystem II, and light-harvesting antenna complexes in EVR3/EGY1/AMOS1 mutants. Moreover, we discover distinct roles of VAR2 and EVR3/EGY1/AMOS1 in the turnover of photosystem II reaction center under high light stress. In summary, our findings indicate that two chloroplast metalloproteases, VAR2/AtFtsH2 and EVR3/EGY1/AMOS1, function coordinately to regulate chloroplast development and reveal new roles of EVR3/EGY1/AMOS1 in regulating chloroplast proteostasis in Arabidopsis.


Asunto(s)
Proteasas ATP-Dependientes/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Cloroplastos/metabolismo , Proteínas de la Membrana/metabolismo , Metaloproteasas/metabolismo , Proteasas ATP-Dependientes/genética , Secuencia de Aminoácidos , Proteínas de Arabidopsis/genética , Secuencia de Bases , Etiolado , Sitios Genéticos , Proteínas de la Membrana/genética , Mutación/genética , Fotosíntesis , Complejo de Proteína del Fotosistema I/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Multimerización de Proteína , Estabilidad Proteica
19.
Front Plant Sci ; 10: 295, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30915096

RESUMEN

Chloroplasts are semiautonomous organelles, retaining their own genomes and gene expression apparatuses but controlled by nucleus genome encoded protein factors during evolution. To analyze the genetic regulatory network of FtsH-mediated chloroplast development in Arabidopsis, a set of suppressor mutants of yellow variegated (var2) have been identified. In this research, we reported the identification of another new var2 suppressor locus, SUPPRESSOR OF VARIEGATION11 (SVR11), which encodes a putative chloroplast-localized prokaryotic type translation elongation factor EF-Tu. SVR11 is likely essential to chloroplast development and plant survival. GUS activity reveals that SVR11 is abundant in the juvenile leaf tissue, lateral roots, and root tips. Interestingly, we found that SVR11 and SVR9 together regulate leaf development, including leaf margin development and cotyledon venation patterns. These findings reinforce the notion that chloroplast translation state triggers retrograde signals regulate not only chloroplast development but also leaf development.

20.
Front Plant Sci ; 10: 16, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30733726

RESUMEN

The single-celled trichomes of Arabidopsis thaliana have long served as an elegant model for elucidating the mechanisms of cell differentiation and morphogenesis due to their unique growth patterns. To identify new components in the genetic network that governs trichome development, we carried out exhaustive screens for additional Arabidopsis mutants with altered trichome morphology. Here, we report one mutant, aberrantly branched trichome1-1 (abt1-1), with a reduced trichome branching phenotype. After positional cloning, a point mutation in the SPIKE1 (SPK1) gene was identified in abt1-1. Further genetic complementation experiments confirmed that abt1-1 is a new allele of SPK1, so abt1-1 was renamed as spk1-7 according to the literatures. spk1-7 and two other spk1 mutant alleles, covering a spectrum of phenotypic severity, highlighted the distinct responses of developmental programs to different SPK1 mutations. Although null spk1 mutants are lethal and show defects in plant stature, trichome and epidermal pavement cell development, only trichome branching is affected in spk1-7. Surprisingly, we found that SPK1 is involved in the positioning of nuclei in the trichome cells. Lastly, through double mutant analysis, we found the coordinated regulation of trichome branching between SPK1 and two other trichome branching regulators, ANGUSTIFOLIA (AN) and ZWICHEL (ZWI). SPK1 might serve for the precise positioning of trichome nuclei, while AN and ZWI contribute to the formation of branch points through governing the cMTs dynamics. In summary, this study presented a fully viable new mutant allele of SPK1 and shed new light on the regulation of trichome branching and other developmental processes by SPK1.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...