Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 83
1.
Cells ; 13(11)2024 Jun 06.
Article En | MEDLINE | ID: mdl-38891120

Methyl-CpG-binding protein 2 (Mecp2) is an epigenetic modulator and numerous studies have explored its impact on the central nervous system manifestations. However, little attention has been given to its potential contributions to the peripheral nervous system (PNS). To investigate the regulation of Mecp2 in the PNS on specific central regions, we generated Mecp2fl/flAdvillincre mice with the sensory-neuron-specific deletion of the Mecp2 gene and found the mutant mice had a heightened sensitivity to temperature, which, however, did not affect the sense of motion, social behaviors, and anxiety-like behavior. Notably, in comparison to Mecp2fl/fl mice, Mecp2fl/flAdvillincre mice exhibited improved learning and memory abilities. The levels of hippocampal synaptophysin and PSD95 proteins were higher in Mecp2fl/flAdvillincre mice than in Mecp2fl/fl mice. Golgi staining revealed a significant increase in total spine density, and dendritic arborization in the hippocampal pyramidal neurons of Mecp2fl/flAdvillincre mice compared to Mecp2fl/fl mice. In addition, the activation of the BDNF-TrkB-CREB1 pathway was observed in the hippocampus and spinal cord of Mecp2fl/flAdvillincre mice. Intriguingly, the hippocampal BDNF/CREB1 signaling pathway in mutant mice was initiated within 5 days after birth. Our findings suggest a potential therapeutic strategy targeting the BDNF-TrkB-CREB1 signaling pathway and peripheral somasensory neurons to treat learning and cognitive deficits associated with Mecp2 disorders.


Brain-Derived Neurotrophic Factor , Cognition , Dendritic Spines , Hippocampus , Methyl-CpG-Binding Protein 2 , Animals , Methyl-CpG-Binding Protein 2/metabolism , Methyl-CpG-Binding Protein 2/genetics , Methyl-CpG-Binding Protein 2/deficiency , Hippocampus/metabolism , Hippocampus/pathology , Dendritic Spines/metabolism , Mice , Brain-Derived Neurotrophic Factor/metabolism , Sensory Receptor Cells/metabolism , Cyclic AMP Response Element-Binding Protein/metabolism , Male , Signal Transduction , Mice, Inbred C57BL , Receptor, trkB/metabolism , Receptor, trkB/genetics
2.
Nat Commun ; 15(1): 1468, 2024 Feb 17.
Article En | MEDLINE | ID: mdl-38368428

Since thermoelectric materials have different physical and chemical properties, the design of contact layers requires dedicated efforts, and the welding temperatures are distinctly different. Therefore, a general interface design and connection technology can greatly facilitate the development of thermoelectric devices. Herein, we proposed a screening strategy for the contact materials based on the calculation of phase diagram method, and Mg2Ni has been identified as a matched contact layer for n-type Mg3Sb2-based materials. And this screening strategy can be effectively applied to other thermoelectric materials. By adopting the low-temperature sintering silver nanoparticles technology, the Zintl phase thermoelectric device can be fabricated at low temperature but operate at medium temperature. The single-leg n-type Mg3.15Co0.05SbBi0.99Se0.01 device achieves an efficiency of ~13.3%, and a high efficiency of ~11% at the temperature difference of 430 K has been realized for the Zintl phase thermoelectric device comprised together with p-type Yb0.9Mg0.9Zn1.198Ag0.002Sb2. Additionally, the thermal aging and thermal cycle experiments proved the long-term reliability of the Mg2Ni/Mg3.15Co0.05SbBi0.99Se0.01 interface and the nano-silver sintering joints. Our work paves an effective avenue for the development of advanced devices for thermoelectric power generation.

3.
ACS Pharmacol Transl Sci ; 7(1): 236-248, 2024 Jan 12.
Article En | MEDLINE | ID: mdl-38230281

Optogenetics is a novel biotechnology widely used to precisely manipulate a specific peripheral sensory neuron or neural circuit. However, the use of optogenetics to assess the therapeutic efficacy of analgesics is elusive. In this study, we generated a transgenic mouse stain in which all primary somatosensory neurons can be optogenetically activated to mimic neuronal hyperactivation in the neuropathic pain state for the assessment of analgesic effects of drugs. A transgenic mouse was generated using the advillin-Cre line mated with the Ai32 strain, in which channelrhodopsin-2 fused to enhanced yellow fluorescence protein (ChR2-EYFP) was conditionally expressed in all types of primary somatosensory neurons (advillincre/ChR2+/+). Immunofluorescence and transdermal photostimulation on the hindpaws were used to verify the transgenic mice. Optical stimulation to evoke pain-like paw withdrawal latency was used to assess the analgesic effects of a series of drugs. Injury- and pain-related molecular biomarkers were investigated with immunohistofluorescence. We found that the expression of ChR2-EYFP was observed in many primary afferents of paw skin and sciatic nerves and in primary sensory neurons and laminae I and II of the spinal dorsal horns in advillincre/ChR2+/+ mice. Transdermal blue light stimulation of the transgenic mouse hindpaw evoked nocifensive paw withdrawal behavior. Treatment with gabapentin, some channel blockers, and local anesthetics, but not opioids or COX-1/2 inhibitors, prolonged the paw withdrawal latency in the transgenic mice. The analgesic effect of gabapentin was also verified by the decreased expression of injury- and pain-related molecular biomarkers. These optogenetic mice provide a promising model for assessing the therapeutic efficacy of analgesics in neuropathic pain.

4.
Science ; 382(6676): 1265-1269, 2023 Dec 15.
Article En | MEDLINE | ID: mdl-38096375

Effective control of heat transfer is vital for energy saving and carbon emission reduction. In contrast to achievements in electrical conduction, active control of heat transfer is much more challenging. Ferroelectrics are promising candidates for thermal switching as a result of their tunable domain structures. However, switching ratios in ferroelectrics are low (<1.2). We report that high-quality antiferroelectric PbZrO3 epitaxial thin films exhibit high-contrast (>2.2), fast-speed (<150 nanoseconds), and long-lifetime (>107) thermal switching under a small voltage (<10 V). In situ reciprocal space mapping and atomistic modelings reveal that the field-driven antiferroelectric-ferroelectric phase transition induces a substantial change of primitive cell size, which modulates phonon-phonon scattering phase space drastically and results in high switching ratio. These results advance the concept of thermal transport control in ferroic materials.

5.
Small Methods ; : e2301322, 2023 Dec 22.
Article En | MEDLINE | ID: mdl-38135872

High-entropy oxides (HEOs) have been showing great promise in a wide range of applications. There remains a lack of clarity regarding the influence of nanostructure and composition on their Li storage performance. Herein, a dealloying technique to synthesize hierarchical nanoporous HEOs with tunable compositions is employed. Building upon the extensively studied quinary AlFeNiCrMnOx , an additional element (Co, V, Ti, or Cu) is introduced to create senary HEOs, allowing for investigation of the impact of the added component on Li storage performance. With higher specific surface areas and oxygen vacancy concentrations, all their HEOs exhibit high Li storage performances. Remarkably, the senary HEO with the addition of V (AlNiFeCrMnVOx ) achieves an impressive capacity of 730.2 mAh g-1 at 2.0 A g-1 , which surpasses all reported performance of HEOs. This result demonstrates the synergistic interaction of the six elements in one HEO nanostructure. Additionally, the battery cycling-induced reconstruction and cation diffusion in the HEOs is uncovered, which results in an initial capacity decrease followed by a subsequent continuous capacity increase and enhanced Li ion diffusion. The results highlight the crucial roles played by both nanoporous structure design and composition optimization in enhancing Li storage of HEOs.

6.
Materials (Basel) ; 16(24)2023 Dec 07.
Article En | MEDLINE | ID: mdl-38138690

The phase-field method, coupled with the micro-elastic model and irradiation-induced cascade mixing model, has been employed to investigate the spinodal decomposition in U-Mo and U-Mo-Zr alloys. The microstructure evolution of U-Mo or U-Mo-Zr alloys under different initial conditions, such as the alloy composition, aging temperature and irradiation intensity, were simulated to study the effect of cascade mixing on the miscibility gap, morphology and volume fraction of the decomposed phases. The simulation results demonstrate that irradiation-induced cascade mixing impedes the process of spinodal decomposition, and that irradiation shrinks the composition range of the miscibility gap in the alloys. Irradiation-induced cascade mixing slows down the anisotropic growth rate of the spinodal decomposition, yet this phenomenon can be weakened with increasing aging temperature. Adding an appropriate amount of Zr to a U-Mo alloy can effectively prevent the contraction of the miscibility gap caused by irradiation.

7.
Nano Lett ; 23(22): 10554-10562, 2023 Nov 22.
Article En | MEDLINE | ID: mdl-37916621

Nanoporous high-entropy oxide (np-HEO) powders with tunable composition are integrated with a poly(vinylidene fluoride) network to create self-floating solar absorber films for seawater desalination. By progressively increasing the element count, we obtain an optimized 9-component AlNiCoFeCrMoVCuTi-Ox. Density functional theory (DFT) calculations reveal a remarkable reduction in its bandgap, facilitating the light-induced migration of electrons to conduction bands to generate electron-hole pairs, which recombine to produce heat. Simultaneously, the intricate light reflection and refraction pathways, shaped by the nanoporous structure, coupled with the reduced thermal conductivity attributed to the suboptimal crystalline quality of the np-HEO ensure an effective conversion of captured light into thermal energy. Consequently, all these films demonstrate an impressive absorbance rate exceeding 93% across the 250-2500 nm spectral range. Under one sun, the surface temperature of the 9-component film rapidly rises to 110 °C within 90 s with a high pure water evaporation rate of 2.16 kg m-2 h-1.

8.
ChemSusChem ; 16(20): e202300823, 2023 Oct 20.
Article En | MEDLINE | ID: mdl-37552229

Prussian blue analogues (PBAs) are promising cathode materials for sodium-ion batteries (SIBs) due to their tunable chemistry, open channel structure, and low cost. However, excessive crystal water and volume expansion can negatively impact the lifetime of actual SIBs. In this study, a novel iron nitroprusside: Fe[Fe(CN)5 NO] (PBN) was synthesized to effectively eliminate the detrimental effects of crystal water on the reversible capacity and cycling stability of PBA materials. Experiments and DFT calculations demonstrated that PBN has lower crystal water and volume expansion compared to Fe[Fe(CN)6 ] (PB). Also, the N=O bond in PBN significantly reduces the diffusion potential of Na+ in the skeleton. Without any modification, the cathode material exhibited a capacity of up to 148.6 mAh g-1 at 50 mA g-1 as well as maintained 102.9 mAh g-1 after 200 cycles. This work expands our knowledge of the crystal structure of PBA cathode materials and facilitates the rational design of high-quality PBA cathodes for SIBs.

9.
Materials (Basel) ; 16(9)2023 May 06.
Article En | MEDLINE | ID: mdl-37176437

The low oil recovery rate observed in current oil fields is largely attributed to the presence of remaining oil trapped in the pores of porous media during waterflooding. To improve the recovery rate, it is imperative to gain an understanding of the oil-water flow characteristics and displacement mechanisms during waterflooding, as well as to elucidate the underlying mobilization mechanisms of residual oil at the pore scale. In this paper, we explore these issues in depth by numerically investigating the influence of factors such as water injection velocities, oil-water viscosity ratios, and wettability conditions on pore-scale oil-water flow characteristics and oil recovery rate. To this end, we employ a direct numerical simulation (DNS) method in conjunction with the volume of fluid (VOF) method to study the microscopic displacement mechanisms of waterflooding in a reconstructed two-dimensional digital rock core based on micro-CT technology. In addition, the particle tracing method is adopted to identify the flow path and dominant areas during waterflooding in order to mobilize the residual oil within the pores. The findings indicate that the oil-water flow characteristics in porous media are determined by the interplay between capillary and viscous forces. Furthermore, the oil recovery rate is 10.6% and 24.7% lower under strong water-wet and oil-wet conditions than that (32.36%) under intermediate wettability conditions, and the final oil recovery rate is higher under water-wet conditions than under oil-wet conditions. The seepage path and the dominant areas are directly linked to the capillarity formed during waterflooding. The findings of this study are significant in terms of enhancing the recovery rate of residual oil and provide a novel perspective for understanding the waterflooding process.

10.
J. physiol. biochem ; 79(2): 313-325, may. 2023.
Article En | IBECS | ID: ibc-222544

Signaling by the transforming growth factor (TGF)-β superfamily is necessary for proper neural development and is involved in pain processing under both physiological and pathological conditions. Sensory neurons that reside in the dorsal root ganglia (DRGs) initially begin to perceive noxious signaling from their innervating peripheral target tissues and further convey pain signaling to the central nervous system. However, the transcriptional profile of the TGF-β superfamily members in DRGs during chronic inflammatory pain remains elusive. We developed a custom microarray to screen for transcriptional changes in members of the TGF-β superfamily in lumbar DRGs of rats with chronic inflammatory pain and found that the transcription of the TGF-β superfamily members tends to be downregulated. Among them, signaling of the activin/inhibin and bone morphogenetic protein/growth and differentiation factor (BMP/GDF) families dramatically decreased. In addition, peripherally pre-local administration of activins A and C worsened formalin-induced acute inflammatory pain, whereas activin C, but not activin A, improved formalin-induced persistent inflammatory pain by inhibiting the activation of astrocytes. This is the first report of the TGF-β superfamily transcriptional profiles in lumbar DRGs under chronic inflammatory pain conditions, in which transcriptional changes in cytokines or pathway components were found to contribute to, or be involved in, inflammatory pain processing. Our data will provide more targets for pain research. (AU)


Animals , Rats , Ganglia, Spinal , Transforming Growth Factor beta , Bone Morphogenetic Proteins/physiology , Diagnosis-Related Groups , Intercellular Signaling Peptides and Proteins , Pain
11.
Langmuir ; 39(11): 4190-4197, 2023 Mar 21.
Article En | MEDLINE | ID: mdl-36880648

Controlling the optical properties of metal plasma nanomaterials through structure manipulation has attracted great attention for solar steam generation. However, realizing broadband solar absorption for high-efficiency vapor generation is still challenging. In this work, a free-standing ultralight gold film/foam with a hierarchical porous microstructure and high porosity is obtained through controllably etching a designed cold-rolled (NiCoFeCr)99Au1 high-entropy precursor alloy with a unique grain texture. During chemical dealloying, the high-entropy precursor went through anisotropic contraction, resulting in a larger surface area compared with that from the Cu99Au1 precursor although the volume shrinkage is similar (over 85%), which is beneficial for the photothermal conversion. The low Au content also results in a special hierarchical lamellar microstructure with both micropores and nanopores within each lamella, which significantly broadens the optical absorption range and makes the optical absorption of the porous film reach 71.1-94.6% between 250 and 2500 nm. In addition, the free-standing nanoporous gold film has excellent hydrophilicity, with the contact angle reaching zero within 2.2 s. Thus, the 28 h dealloyed nanoporous gold film (NPG-28) exhibits a rapid evaporation rate of seawater under 1 kW m-2 light intensity, reaching 1.53 kg m-2 h-1, and the photothermal conversion efficiency reaches 96.28%. This work demonstrates the enhanced noble metal gold using efficiency and solar thermal conversion efficiency by controlled anisotropic shrinkage and forming a hierarchical porous foam.

12.
Funct Integr Genomics ; 23(1): 75, 2023 Mar 03.
Article En | MEDLINE | ID: mdl-36867268

Lung adenocarcinoma (LUAD) represents the subtype of non-small-cell lung cancer (NSCLC), with the high morbidity over the world. Mounting studies have highlighted the important roles of circular RNAs (circRNA) in cancers, including LUAD. This study mainly focused on revealing the role of circGRAMD1B and its relevant regulatory mechanism in LUAD cells. RT-qPCR and Western blot were conducted to detect the expression of target genes. Function assays were performed to determine the effect of related genes on migration, invasion, and epithelial-mesenchymal transition (EMT) of LUAD cells. Mechanism analyses were conducted to figure out the specific mechanism with regard to circGRAMD1B and its downstream molecules as well. Based on the experimental results, circGRAMD1B was upregulated in LUAD cells and promoted the migration, invasion, and EMT of LUAD cells. Mechanically, circGRAMD1B sponged miR-4428 to upregulate the expression of SOX4. In addition, SOX4 activated the expression of MEX3A at the transcriptional level, thereby modulating PI3K/AKT pathway to facilitate LUAD cell malignant behaviors. In conclusion, circGRAMD1B is discovered to modulate miR-4428/SOX4/MEX3A axis to further activate PI3K/AKT pathway, finally boosting migration, invasion, and EMT of LUAD cells.


Adenocarcinoma of Lung , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , MicroRNAs , Humans , Epithelial-Mesenchymal Transition , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , SOXC Transcription Factors , Phosphoproteins , RNA-Binding Proteins
13.
Chem Sci ; 14(4): 771-790, 2023 Jan 25.
Article En | MEDLINE | ID: mdl-36755717

High-entropy materials (HEMs) are new-fashioned functional materials in the field of catalysis owing to their large designing space, tunable electronic structure, interesting "cocktail effect", and entropy stabilization effect. Many effective strategies have been developed to design advanced catalysts for various important reactions. Herein, we firstly review effective strategies developed so far for optimizing HEM-based catalysts and the underlying mechanism revealed by both theoretical simulations and experimental aspects. In light of this overview, we subsequently present some perspectives about the development of HEM-based catalysts and provide some serviceable guidelines and/or inspiration for further studying multicomponent catalysts.

14.
J Physiol Biochem ; 79(2): 313-325, 2023 May.
Article En | MEDLINE | ID: mdl-36696051

Signaling by the transforming growth factor (TGF)-ß superfamily is necessary for proper neural development and is involved in pain processing under both physiological and pathological conditions. Sensory neurons that reside in the dorsal root ganglia (DRGs) initially begin to perceive noxious signaling from their innervating peripheral target tissues and further convey pain signaling to the central nervous system. However, the transcriptional profile of the TGF-ß superfamily members in DRGs during chronic inflammatory pain remains elusive. We developed a custom microarray to screen for transcriptional changes in members of the TGF-ß superfamily in lumbar DRGs of rats with chronic inflammatory pain and found that the transcription of the TGF-ß superfamily members tends to be downregulated. Among them, signaling of the activin/inhibin and bone morphogenetic protein/growth and differentiation factor (BMP/GDF) families dramatically decreased. In addition, peripherally pre-local administration of activins A and C worsened formalin-induced acute inflammatory pain, whereas activin C, but not activin A, improved formalin-induced persistent inflammatory pain by inhibiting the activation of astrocytes. This is the first report of the TGF-ß superfamily transcriptional profiles in lumbar DRGs under chronic inflammatory pain conditions, in which transcriptional changes in cytokines or pathway components were found to contribute to, or be involved in, inflammatory pain processing. Our data will provide more targets for pain research.


Ganglia, Spinal , Transforming Growth Factor beta , Rats , Animals , Transforming Growth Factor beta/metabolism , Bone Morphogenetic Proteins/physiology , Intercellular Signaling Peptides and Proteins , Pain , Diagnosis-Related Groups
15.
Article En | MEDLINE | ID: mdl-36201267

BACKGROUND: Neuroinflammation and cytokines play critical roles in neuropathic pain and axon degeneration/regeneration. Cytokines of transforming growth factor-ß superfamily have implications in pain and injured nerve repair processing. However, the transcriptional profiles of the transforming growth factor-ß superfamily members in dorsal root ganglia under neuropathic pain and axon degeneration/regeneration conditions remain elusive. OBJECTIVE: We aimed to plot the transcriptional profiles of transforming growth factor-ß superfamily components in lumbar dorsal root ganglia of sciatic nerve-axotomized rats and to further verify the profiles by testing the analgesic effect of activin C, a representative cytokine, on neuropathic pain. METHODS: Adult male rats were axotomized in sciatic nerves, and lumbar dorsal root ganglia were isolated for total RNA extraction or section. A custom microarray was developed and employed to plot the gene expression profiles of transforming growth factor-ß superfamily components. Realtime RT-PCR was used to confirm changes in the expression of activin/inhibin family genes, and then in situ hybridization was performed to determine the cellular locations of inhibin α, activin ßC, BMP-5 and GDF-9 mRNAs. The rat spared nerve injury model was performed, and a pain test was employed to determine the effect of activin C on neuropathic pain. RESULTS: The expression of transforming growth factor-ß superfamily cytokines and their signaling, including some receptors and signaling adaptors, were robustly upregulated. Activin ßC subunit mRNAs were expressed in the small-diameter dorsal root ganglion neurons and upregulated after axotomy. Single intrathecal injection of activin C inhibited neuropathic pain in spared nerve injury model. CONCLUSION: This is the first report to investigate the transcriptional profiles of members of transforming growth factor-ß superfamily in axotomized dorsal root ganglia. The distinct cytokine profiles observed here might provide clues toward further study of the role of transforming growth factor-ß superfamily in the pathogenesis of neuropathic pain and axon degeneration/regeneration after peripheral nerve injury.


Neuralgia , Transforming Growth Factor beta , Rats , Male , Animals , Axotomy , Rats, Sprague-Dawley , Transforming Growth Factor beta/pharmacology , Activins/genetics , Activins/pharmacology , Sciatic Nerve/injuries , Sciatic Nerve/pathology , Neuralgia/genetics , Neuralgia/pathology , RNA, Messenger/genetics , Inhibins/pharmacology , Transforming Growth Factors/pharmacology
16.
Research (Wash D C) ; 2022: 9875329, 2022.
Article En | MEDLINE | ID: mdl-36340507

The thermoelectric parameters are essentially governed by electron and phonon transport. Since the carrier scattering mechanism plays a decisive role in electron transport, it is of great significance for the electrical properties of thermoelectric materials. As a typical example, the defect-dominated carrier scattering mechanism can significantly impact the room-temperature electron mobility of n-type Mg3Sb2-based materials. However, the origin of such a defect scattering mechanism is still controversial. Herein, the existence of the Mg vacancies and Mg interstitials has been identified by synchrotron powder X-ray diffraction. The relationship among the point defects, chemical compositions, and synthesis conditions in Mg3Sb2-based materials has been revealed. By further introducing the point defects without affecting the grain size via neutron irradiation, the thermally activated electrical conductivity can be reproduced. Our results demonstrate that the point defects scattering of electrons is important in the n-type Mg3Sb2-based materials.

17.
Materials (Basel) ; 15(19)2022 Sep 27.
Article En | MEDLINE | ID: mdl-36234050

Fe additives may play an important role in the preparation of aluminum-based hydrolysis hydrogen powder, with high hydrogen yield, low cost, and good oxidation resistance. Therefore, it is necessary to ascertain the effect of Fe on the hydrogen production performance of Al-Bi-Sn composite powders. According to the calculated vertical cross-section of the Al-10Bi-7Sn-(0~6)Fe (wt.%) quasi-binary system, Al-10Bi-7Sn-xFe (x = 0, 0.5, 1.5, 3) wt.% composite powders for hydrogen production were prepared by the gas-atomization method. The results showed that the Al-10Bi-7Sn-1.5Fe (wt.%) powder exhibited an extremely fast hydrogen generation rate at 50 °C, which reached 1105 mL·g-1 in 27 min in distilled water, 1086 mL·g-1 in 15 min in 0.1 mol·L-1 NaCl solution, and 1086 mL·g-1 in 15 min in 0.1 mol·L-1 CaCl2 solution. In addition, the antioxidant properties of these powders were also investigated. The results showed that the hydrogen production performance of the Al-10Bi-7Sn-1.5Fe (wt.%) powder could retain 91% of its hydrogen production activity, even though the powder was exposed to 25 °C and 60 RH% for 72 h. The addition of Fe not only promoted the hydrogen generation rate of the Al-Bi-Sn composite powders, but also improved their oxidation resistance. The Al-10Bi-7Sn-1.5Fe (wt.%) composite powder shows great potential for mobile hydrogen source scenarios with rapid hydrogen production.

18.
Front Neurol ; 13: 989832, 2022.
Article En | MEDLINE | ID: mdl-36277931

Objective: This study aimed to analyze the cerebrospinal fluid (CSF) parameters affecting the outcomes of patients with tuberculous meningitis (TBM). Methods: This is a multi-center, retrospective, cohort study involving 81 patients who were diagnosed with TBM and treated in Haihe Clinical College of Tianjin Medical University, Tianjin Medical University General Hospital, and General Hospital of Air Force PLA from January 2016 to December 2019. Baseline data, Glasgow Coma Scale (GCS) score, and clinical presentations of all patients were collected at admission. CSF samples were collected at 48 h, 1, 2, and 3 weeks after admission. CSF lactate, adenosine deaminase, chloride, protein, glucose levels and intracranial pressure were measured. After a follow-up of 16.14 ± 3.03 months, all patients were assessed using the modified Rankin Scale (mRS) and divided into good (mRS scores of 0-2 points) and poor outcome groups (mRS scores of 3-6 points). The differences in patients' baseline data, GCS score, clinical presentations, and levels of CSF parameters detected at 48 h, 1, 2, and 3 weeks after admission between two groups were compared. Statistically significant variables were added to the binary logistic regression model to identify the factors impacting the outcomes of patients with TBM. Receiver operating characteristic (ROC) curve was used to assess the predictive ability of the model. Results: The CSF lactate level exhibited a decreasing trend within 3 weeks of admission in the two groups. For the within-group comparison, statistically significant differences in the lactate level was found in both groups between four different time points. A binary logistic regression model revealed that CSF lactate level at 48 h after admission, age, and GSC score on admission were independently associated with the outcomes of patients with TBM. ROC curve analysis showed that the area under the ROC curve (AUC) was 0.786 for the CSF lactate level (48 h), 0.814 for GCS score, and 0.764 for age. Conclusion: High CSF lactate level at 48 h after admission is one of the important factors for poor outcomes in patients with TBM.

19.
ACS Appl Mater Interfaces ; 14(40): 45254-45262, 2022 Oct 12.
Article En | MEDLINE | ID: mdl-36166239

Aluminum-ion batteries have garnered significant interest as a potentially safer and cheaper replacement for conventional lithium-ion batteries, offering a shorter charging time and denser storage capacity. Nonetheless, the progress in this field is considerably hampered by the limited availability of suitable cathode materials that can sustain the reversible intercalation of Al3+/[AlCl4]- ions, particularly after long cycles. Herein, we demonstrate that rechargeable Al batteries embedded with two-dimensional (2D) Nb2CTx MXene as a cathode material exhibit excellent capacity and exceptional long cyclic performance. We have successfully improved the initial electrochemical performance of Nb2CTx MXene after being properly delaminated to a single-layered microstructure and subjected to a post-synthesis calcining treatment. Compared to pristine Nb2CTx MXene, the Al battery embedded with the calcined Nb2CTx MXene cathode has, respectively, retained high capacities of 108 and 80 mAh g-1 after 500 cycles at current densities of 0.2 and 0.5 A g-1 in a wide voltage window (0.1-2.4 V). Noteworthily, the cyclic lifetime of Nb2CTx MXene was extended from ∼300 to >500 times after calcination. We reveal that attaining Nb2CTx nanosheets with a controllable d-spacing has promoted the migration of the [AlCl4]- and Al3+ ions in the MXene interlayers, leading to enhanced charge storage. Furthermore, we found out that the formation of niobium oxides and amorphous carbon after calcination probably benefits the electrochemical performance of Nb2CTx MXene electrode in Al batteries.

20.
Nanoscale ; 14(21): 7856-7863, 2022 Jun 01.
Article En | MEDLINE | ID: mdl-35583119

Multidrug resistance (MDR) has become one of the most intractable problems in clinics as it would cause failure in chemotherapy. In this study, we demonstrated that a nanoscale self-assembled nanomedicine, which almost consisted of a pure chemo-drug, could efficiently overcome MDR. Celastrol (CST) was directly assembled into a discrete nanomedicine by precipitation, and then CST nanoparticles (CNPs) inhibited drug efflux pumps by activating HSF-1 expression and promoting HSF-1 translocation into nucleus to suppress the Pgp expression. The more drug accumulated in cells could activate apoptosis signals simultaneously and realize drug resistance reversal. CNPs significantly increased the level of ROS to regulate ERK/JNK signaling, which would further induce resistant cell apoptosis. The tandem apoptosis strategy used the same concentration of CST but achieved a higher antitumor effect. Overall, our study provides a new translational and alternative strategy using conventional natural products to overcome MDR with high efficacy.


Antineoplastic Agents , Nanoparticles , Neoplasms , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Drug Resistance, Multiple , Drug Resistance, Neoplasm , Neoplasms/drug therapy , Pentacyclic Triterpenes/pharmacology , Pentacyclic Triterpenes/therapeutic use
...