Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 50
1.
Gait Posture ; 111: 143-149, 2024 Jun.
Article En | MEDLINE | ID: mdl-38703442

BACKGROUND: Obesity can cause structural changes and functional adjustments in growing children's feet. However, there is a lack of continuous observation of changes in feet in children with persistent obesity during important developmental periods. This makes it challenging to provide precise preventive measures. OBJECTIVE: This study aimed to investigate the effects of persistent obesity on gait patterns in children at an important stage in the formation of a robust foot arch. METHODS: The Footscan® plantar pressure system was used for 3 checks over two years. A total of 372 children aged 7-8 years participated in the study, and gait data from 33 children who maintained normal weight and 26 children with persistent obesity were finally selected. Repeated measures ANOVA or Friedman's test were used for longitudinal comparisons. Independent-Sample t-tests or the Mann-Whitney-Wilcoxon tests were used for cross-sectional comparisons. RESULTS: During the important period of development, children with persistent obesity did not exhibit a significant decrease in the arch index and had significantly higher values than the normal group in the third check. The persistently obese children showed increased load accumulation in the lateral rearfoot, first metatarsophalangeal joints, and the great toe regions. Children with persistent obesity had significantly greater medial-lateral displacements in the initial contact phase and forefoot contact phase than normal children in the first check. These differences diminished between the second and third checks. SIGNIFICANCE: Persistent obesity during an important period of foot development leads to slow or abnormal development of arch structure and affects foot loading patterns with heel inverted and forefoot everted. Additionally, the development of gait stability is not limited by persistent obesity.


Foot , Gait , Humans , Child , Male , Female , Longitudinal Studies , Gait/physiology , Foot/physiopathology , Foot/physiology , Biomechanical Phenomena , Pediatric Obesity/physiopathology , Cross-Sectional Studies
2.
Neoplasia ; 53: 101004, 2024 07.
Article En | MEDLINE | ID: mdl-38733769

Thioredoxin reductases are frequently overexpressed in various solid tumors as a protective mechanism against heightened oxidative stress. Inhibitors of this system, such as Auranofin, are effective in eradicating cancer cells. However, the clinical significance of thioredoxin reductase 1 (TrxR1) in lung cancer, as well as the potential for its antagonist as a treatment option, necessitated further experimental validation. In this study, we observed significant upregulation of TrxR1 specifically in non-small cell lung cancer (NSCLC), rather than small cell lung cancer. Moreover, TrxR1 expression exhibited associations with survival rate, tumor volume, and histological classification. We developed a novel TrxR1 inhibitor named LW-216 and assessed its antitumor efficacy in NSCLC. Our results revealed that LW-216 is effectively bound with intracellular TrxR1 at sites R371 and G442, facilitating TrxR1 ubiquitination and suppressing TrxR1 expression, while not affecting TrxR2 expression. Treatment of LW-216-induced DNA damage and cell apoptosis in NSCLC cells through the generation of reactive oxygen species (ROS). Importantly, supplementation with N-acetylcysteine (NAC) or ectopic TrxR1 expression reversed LW-216-induced apoptosis. Furthermore, LW-216 displayed potent tumor growth inhibition in NSCLC cell-implanted mice, reducing TrxR1 expression in xenografts. Remarkably, LW-216 exhibited superior antitumor activity compared to Auranofin in vivo. Collectively, our research provides compelling evidence supporting the potential of targeting TrxR1 by LW-216 as a promising therapeutic strategy for NSCLC.


Apoptosis , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Reactive Oxygen Species , Thioredoxin Reductase 1 , Ubiquitination , Xenograft Model Antitumor Assays , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Humans , Thioredoxin Reductase 1/metabolism , Thioredoxin Reductase 1/genetics , Reactive Oxygen Species/metabolism , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Lung Neoplasms/drug therapy , Apoptosis/drug effects , Animals , Mice , Cell Line, Tumor , Proteolysis , Cell Proliferation/drug effects , Female , Gene Expression Regulation, Neoplastic/drug effects , Disease Models, Animal , Male , Antineoplastic Agents/pharmacology
3.
Plants (Basel) ; 13(6)2024 Mar 16.
Article En | MEDLINE | ID: mdl-38592851

Receptor kinases DRUS1 (Dwarf and Runtish Spikelet1) and DRUS2 are orthologues of the renowned Arabidopsis thaliana gene FERONIA, which play redundant roles in rice growth and development. Whether the two duplicated genes perform distinct functions in response to environmental stress is largely unknown. Here, we found that osmotic stress (OS) and ABA increased DRUS1 expression while decreasing DRUS2. When subjected to osmotic stress, the increased DRUS1 in drus2 mutants suppresses the OsIAA repressors, resulting in a robust root system with an increased number of adventitious and lateral roots as well as elongated primary, adventitious, and lateral roots, conferring OS tolerance. In contrast, the decreased DRUS2 in drus1-1 mutants are not sufficient to suppress OsIAA repressors, leading to a feeble root system with fewer adventitious and lateral roots and hindering seminal root growth, rendering OS intolerance. All these findings offer valuable insights into the biological significance of the duplication of two homologous genes in rice, wherein, if one is impaired, the other one is able to continue auxin-signaling-mediated root growth and development to favor resilience to environmental stress, such as water shortage.

4.
Front Microbiol ; 15: 1346252, 2024.
Article En | MEDLINE | ID: mdl-38486702

The fungus Rhizopus arrhizus (=R. oryzae) is commonly saprotrophic, exhibiting a nature of decomposing organic matter. Additionally, it serves as a crucial starter in food fermentation and can act as a pathogen causing mucormycosis in humans and animals. In this study, two distinct endofungal bacteria (EFBs), associated with individual strains of R. arrhizus, were identified using live/dead staining, fluorescence in situ hybridization, transmission electron microscopy, and 16S rDNA sequencing. The roles of these bacteria were elucidated through antibiotic treatment, pure cultivation, and comparative genomics. The bacterial endosymbionts, Pandoraea sputorum EFB03792 and Mycetohabitans endofungorum EFB03829, were purified from the host fungal strains R. arrhizus XY03792 and XY03829, respectively. Notably, this study marks the first report of Pandoraea as an EFB genus. Compared to its free-living counterparts, P. sputorum EFB03792 exhibited 28 specific virulence factor-related genes, six specific CE10 family genes, and 74 genes associated with type III secretion system (T3SS), emphasizing its pivotal role in invasion and colonization. Furthermore, this study introduces R. arrhizus as a new host for EFB M. endofungorum, with EFB contributing to host sporulation. Despite a visibly reduced genome, M. endofungorum EFB03829 displayed a substantial number of virulence factor-related genes, CE10 family genes, T3SS genes, mobile elements, and significant gene rearrangement. While EFBs have been previously identified in R. arrhizus, their toxin-producing potential in food fermentation has not been explored until this study. The discovery of these two new EFBs highlights their potential for toxin production within R. arrhizus, laying the groundwork for identifying suitable R. arrhizus strains for fermentation processes.

5.
Nat Prod Res ; : 1-9, 2024 Mar 26.
Article En | MEDLINE | ID: mdl-38529798

Twenty-one hexahydropyrrolidoindole alkaloids were designed and synthesised via acylation reaction at the 3-N position from the commercially available indole-3-acetonitrile as the starting material in excellent yields. The effects of all target compounds against Verticillium dahlia, Fusarium oxysperium sp., Cytospora juglandis, Aspergillu sflavu, Aspergillus niger and Fusarium oxysporum were determined. The results of bioassays indicated that the majority of tested compounds displayed comparable or better in vitro bioactivity than the positive control. Notably, compounds 8 and 17 revealed potent activity against C. juglandis and A. sflavu, both with the same minimum inhibitory concentration value of 1.9 µg mL-1, which has fungicidal activity far exceeded that of amphotericin B and chlorothalonil.

6.
J Fungi (Basel) ; 10(1)2024 Jan 17.
Article En | MEDLINE | ID: mdl-38248983

Apiospora is widely distributed throughout the world, and most of its hosts are Poaceae. In this study, Arthrinium-like strains were isolated from non-Poaceae in the Hainan and Fujian provinces of China. Based on the combined DNA sequence data of the internal transcriptional spacer (ITS), partial large subunit nuclear rDNA (LSU), translation extension factor 1-α gene (TEF1-α) and ß-tubulin (TUB2), the collected Apiospora specimens were compared with known species, and three new species were identified. Based on morphological and molecular phylogenetic analyses, Apiospora adinandrae sp. nov., A. bawanglingensis sp. nov. and A. machili sp. nov. are described and illustrated.

7.
New Phytol ; 241(4): 1492-1509, 2024 Feb.
Article En | MEDLINE | ID: mdl-38095247

During abscisic acid (ABA) signaling, reversible phosphorylation controls the activity and accumulation of class III SNF1-RELATED PROTEIN KINASE 2s (SnRK2s). While protein phosphatases that negatively regulate SnRK2s have been identified, those that positively regulate ABA signaling through SnRK2s are less understood. In this study, Arabidopsis thaliana mutants of Clade E Growth-Regulating 1 and 2 (EGR1/2), which belong to the protein phosphatase 2C family, exhibited reduced ABA sensitivity in terms of seed germination, cotyledon greening, and ABI5 accumulation. Conversely, overexpression increased these ABA-induced responses. Transcriptomic data revealed that most ABA-regulated genes in egr1 egr2 plants were expressed at reduced levels compared with those in Col-0 after ABA treatment. Abscisic acid up-regulated EGR1/2, which interact directly with SnRK2.2 through its C-terminal domain I. Genetic analysis demonstrated that EGR1/2 function through SnRK2.2 during ABA response. Furthermore, SnRK2.2 de-phosphorylation by EGR1/2 was identified at serine 31 within the ATP-binding pocket. A phospho-mimic mutation confirmed that phosphorylation at serine 31 inhibited SnRK2.2 activity and reduced ABA responsiveness in plants. Our findings highlight the positive role of EGR1/2 in regulating ABA signaling, they reveal a new mechanism for modulating SnRK2.2 activity, and provide novel insight into how plants fine-tune their responses to ABA.


Arabidopsis Proteins , Arabidopsis , Phosphorylation , Abscisic Acid/pharmacology , Abscisic Acid/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Serine/metabolism , Gene Expression Regulation, Plant , Protein Serine-Threonine Kinases/metabolism
8.
J Integr Plant Biol ; 66(1): 20-35, 2024 Jan.
Article En | MEDLINE | ID: mdl-37905451

Thermomorphogenesis and the heat shock (HS) response are distinct thermal responses in plants that are regulated by PHYTOCHROME-INTERACTING FACTOR 4 (PIF4) and HEAT SHOCK FACTOR A1s (HSFA1s), respectively. Little is known about whether these responses are interconnected and whether they are activated by similar mechanisms. An analysis of transcriptome dynamics in response to warm temperature (28°C) treatment revealed that 30 min of exposure activated the expression of a subset of HSFA1 target genes in Arabidopsis thaliana. Meanwhile, a loss-of-function HSFA1 quadruple mutant (hsfa1-cq) was insensitive to warm temperature-induced hypocotyl growth. In hsfa1-cq plants grown at 28°C, the protein and transcript levels of PIF4 were greatly reduced, and the circadian rhythm of many thermomorphogenesis-related genes (including PIF4) was disturbed. Additionally, the nuclear localization of HSFA1s and the binding of HSFA1d to the PIF4 promoter increased following warm temperature exposure, whereas PIF4 overexpression in hsfa1-cq partially rescued the altered warm temperature-induced hypocotyl growth of the mutant. Taken together, these results suggest that HSFA1s are required for PIF4 accumulation at a warm temperature, and they establish a central role for HSFA1s in regulating both thermomorphogenesis and HS responses in Arabidopsis.


Arabidopsis Proteins , Arabidopsis , Phytochrome , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Phytochrome/genetics , Vernalization , Heat-Shock Response/genetics , Temperature , Hypocotyl/metabolism , Gene Expression Regulation, Plant
9.
Plant J ; 116(2): 478-496, 2023 Oct.
Article En | MEDLINE | ID: mdl-37478313

Switch defective/sucrose non-fermentable (SWI/SNF) chromatin remodeling complexes are evolutionarily conserved, multi-subunit machinery that play vital roles in the regulation of gene expression by controlling nucleosome positioning and occupancy. However, little is known about the subunit composition of SPLAYED (SYD)-containing SWI/SNF complexes in plants. Here, we show that the Arabidopsis thaliana Leaf and Flower Related (LFR) is a subunit of SYD-containing SWI/SNF complexes. LFR interacts directly with multiple SWI/SNF subunits, including the catalytic ATPase subunit SYD, in vitro and in vivo. Phenotypic analyses of lfr-2 mutant flowers revealed that LFR is important for proper filament and pistil development, resembling the function of SYD. Transcriptome profiling revealed that LFR and SYD shared a subset of co-regulated genes. We further demonstrate that the LFR and SYD interdependently activate the transcription of AGAMOUS (AG), a C-class floral organ identity gene, by regulating the occupation of nucleosome, chromatin loop, histone modification, and Pol II enrichment on the AG locus. Furthermore, the chromosome conformation capture (3C) assay revealed that the gene loop at AG locus is negatively correlated with the AG expression level, and LFR-SYD was functional to demolish the AG chromatin loop to promote its transcription. Collectively, these results provide insight into the molecular mechanism of the Arabidopsis SYD-SWI/SNF complex in the control of higher chromatin conformation of the floral identity gene essential to plant reproductive organ development.

10.
MycoKeys ; 95: 27-45, 2023.
Article En | MEDLINE | ID: mdl-37251996

The genus Apiospora includes endophytes, pathogens and saprobes, with a wide host range and geographic distribution. In this paper, six Apiospora strains isolated from diseased and healthy tissues of bamboo leaves from Hainan and Shandong provinces in China were classified using a multi-locus phylogeny based on a combined dataset of ITS, LSU, tef1 and tub2, in conjunction with morphological characters, host association and ecological distribution. Two new species, Apiosporadongyingensis and A.hainanensis, and a new record of A.pseudosinensis in China, are described based on their distinct phylogenetic relationships and morphological analyses. Illustrations and descriptions of the three taxa are provided, along with comparisons with closely related taxa in the genus.

11.
J Fungi (Basel) ; 9(1)2023 Jan 05.
Article En | MEDLINE | ID: mdl-36675903

Species of Pseudoplagiostomataceae were mainly introduced as endophytes, plant pathogens, or saprobes from various hosts. Based on multi-locus phylogenies from the internal transcribed spacers (ITS), the large subunit of nuclear ribosomal RNA gene (LSU), partial DNA-directed RNA polymerase II subunit two gene (rpb2), the partial translation elongation factor 1-alpha gene (tef1α), and the partial beta-tubulin gene (tub2), in conjunction with morphological characteristics, we describe three new species, viz. Pseudoplagiostoma alsophilae sp. nov., P. bambusae sp. nov., and P. machili sp. nov. Molecular clock analyses on the divergence times of Pseudoplagiostomataceae indicated that the conjoint ancestor of Pseudoplagiostomataceae and Apoharknessiaceae occurred in the Cretaceous period. and had a mean stem age of 104.1 Mya (95% HPD of 86.0-129.0 Mya, 1.0 PP), and most species emerged in the Paleogene and Neogene period. Historical biogeography was reconstructed for Pseudoplagiostomataceae by the RASP software with a S-DEC model, and suggested that Asia, specifically Southeast Asia, was probably the ancestral area.

12.
Molecules ; 28(2)2023 Jan 06.
Article En | MEDLINE | ID: mdl-36677646

Lithium-sulfur (Li-S) batteries are regarded as one of the promising advanced energy storage systems due to their ultrahigh capacity and energy density. However, their practical applications are still hindered by the serious shuttle effect and sluggish reaction kinetics of soluble lithium polysulfides. Herein, g-C3N4 nanosheets and graphene decorated with an ultrafine Co-species nanodot heterostructure (Co@g-C3N4/G) as separator coatings were designed following a facile approach. Such an interlayer can not only enable effective polysulfide affinity through the physical barrier and chemical binding but also simultaneously have a catalytic effect on polysulfide conversion. Because of these superior merits, the Li-S cells assembled with Co@g-C3N4/G-PP separators matched with the S/KB composites (up to ~70 wt% sulfur in the final cathode) exhibit excellent rate capability and good cyclic stability. A high specific capacity of ~860 mAh g-1 at 2.0 C as well as a capacity-fading rate of only ~0.035% per cycle over 350 cycles at 0.5 C can be achieved. This bifunctional separator can even endow a Li-S cell at a low current density to exhibit excellent cycling capability, with a capacity retention rate of ~88.4% at 0.2 C over 250 cycles. Furthermore, a Li-S cell with a Co@g-C3N4/G-PP separator possesses a stable specific capacity of 785 mAh g-1 at 0.2 C after 150 cycles and a superior capacity retention rate of ~84.6% with a high sulfur loading of ~3.0 mg cm-2. This effective polysulfide-confined separator holds good promise for promoting the further development of high-energy-density Li-S batteries.

13.
Nat Commun ; 13(1): 7192, 2022 Nov 23.
Article En | MEDLINE | ID: mdl-36418311

Actinide diatomic molecules are ideal models to study elusive actinide multiple bonds, but most of these diatomic molecules have so far only been studied in solid inert gas matrices. Herein, we report a charged U≡N diatomic species captured in fullerene cages and stabilized by the U-fullerene coordination interaction. Two diatomic clusterfullerenes, viz. UN@Cs(6)-C82 and UN@C2(5)-C82, were successfully synthesized and characterized. Crystallographic analysis reveals U-N bond lengths of 1.760(7) and 1.760(20) Å in UN@Cs(6)-C82 and UN@C2(5)-C82. Moreover, U≡N was found to be immobilized and coordinated to the fullerene cages at 100 K but it rotates inside the cage at 273 K. Quantum-chemical calculations show a (UN)2+@(C82)2- electronic structure with formal +5 oxidation state (f1) of U and unambiguously demonstrate the presence of a U≡N bond in the clusterfullerenes. This study constitutes an approach to stabilize fundamentally important actinide multiply bonded species.

14.
Proc Natl Acad Sci U S A ; 119(45): e2206846119, 2022 Nov 08.
Article En | MEDLINE | ID: mdl-36322735

Heat stress limits plant growth, development, and crop yield, but how plant cells precisely sense and transduce heat stress signals remains elusive. Here, we identified a conserved heat stress response mechanism to elucidate how heat stress signal is transmitted from the cytoplasm into the nucleus for epigenetic modifiers. We demonstrate that HISTONE DEACETYLASE 9 (HDA9) transduces heat signals from the cytoplasm to the nucleus to play a positive regulatory role in heat responses in Arabidopsis. Heat specifically induces HDA9 accumulation in the nucleus. Under heat stress, the phosphatase PP2AB'ß directly interacts with and dephosphorylates HDA9 to protect HDA9 from 26S proteasome-mediated degradation, leading to the translocation of nonphosphorylated HDA9 to the nucleus. This heat-induced enrichment of HDA9 in the nucleus depends on the nucleoporin HOS1. In the nucleus, HDA9 binds and deacetylates the target genes related to signaling transduction and plant development to repress gene expression in a transcription factor YIN YANG 1-dependent and -independent manner, resulting in rebalance of plant development and heat response. Therefore, we uncover an HDA9-mediated positive regulatory module in the heat shock signal transduction pathway. More important, this cytoplasm-to-nucleus translocation of HDA9 in response to heat stress is conserved in wheat and rice, which confers the mechanism significant implication potential for crop breeding to cope with global climate warming.


Arabidopsis Proteins , Arabidopsis , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant , Plant Cells/metabolism , Plant Breeding , Arabidopsis/metabolism , Histone Deacetylases/genetics , Histone Deacetylases/metabolism
15.
Int J Biol Macromol ; 202: 26-36, 2022 Mar 31.
Article En | MEDLINE | ID: mdl-35007633

Carboxymethyl chitosan (CMCh)-peptide conjugates were produced by grafting CMCh with peptides from hemp seed, maize and casein. The nanoemulsions stabilized by these conjugates had smaller droplet size and better emulsifying properties. Nanoemulsions stabilized by conjugates were used to develop active films containing Camellia essential oil and the effect of conjugation on physicochemical properties of resulting films was evaluated. Water vapor and oxygen barrier properties, tensile strength, flexibility, and temperature of endothermic peak increased 6.6-19.8% and 6.9-27.2%, 40.1-96.6%, 61.4-83.3% and 7.8-18.5%, respectively when the CMCh-peptide conjugates were used to emulsify the essential oil. The conjugation helped to form compact structure. All of the films containing essential oil emulsions stabilized by conjugates showed the ability to extend the shelf-life of blueberry by maintaining the firmness, reducing the weight loss and slowing down the formation of soluble solids.


Blueberry Plants , Chitosan , Oils, Volatile , Chitosan/chemistry , Emulsions/chemistry , Oils, Volatile/chemistry , Peptides
16.
J Colloid Interface Sci ; 608(Pt 1): 470-481, 2022 Feb 15.
Article En | MEDLINE | ID: mdl-34628315

The sluggish redox kinetic and shuttle effect of polysulfides still obstruct the commercial application of lithium-sulfur (Li-S) batteries. Herein, a nanocomposite consisting of well-dispersed and lamellar-like shape CoS anchored on g-C3N4 nanosheets (CoS@g-C3N4) is prepared firstly, and then it is integrated on a polypropylene membrane combined with little conductive Ketjen black (KB) to fabricate a multifunctional and quite thin interlayer, with a thickness of only âˆ¼ 2.1 um and areal mass loading of âˆ¼ 0.07 mg·cm-2. The as-prepared interlayer firstly can capture polysulfides by Li-N bond as well as Lewis acid-base interaction between CoS and polysulfide anions (Sn2-), and more importantly, it also displays a positive effect on catalyzing the redox conversion of intermediate polysulfides. As expected, a Li-S cell assembled with this modified separator and high sulfur content cathode displays an excellent electrochemical performance, with specific capacity of âˆ¼ 1290 mAh g-1 at 0.2C and a low fading rate of 0.03% per cycle after 500 cycles at 1.0C. Furthermore, a high sulfur mass loading of âˆ¼ 4.0 mg·cm-2 electrode paired with this multifunctional separator exhibits a stable specific capacity of âˆ¼ 600 mAh g-1 after 250 cycles under 0.1C. This work can give some guides to rational design a quite thin and light interlayer for improving the utilization of sulfur species, with little damage to the energy density and Li ion transportation in Li-S batteries.

17.
Anal Chem ; 94(2): 1325-1332, 2022 01 18.
Article En | MEDLINE | ID: mdl-34939788

In view of the shortcomings of the current coreactant electrochemiluminescence (ECL) and inspired by natural oxygen (O2) reduction metalloenzymes, a novel ECL amplification strategy was established. A pyrolytic iron- and nitrogen-doped (Fe-N-C) nanosheet rich in singly ionized oxygen vacancy (VO•) defects was rationally designed by destroying the highly saturated coordination with a preorganized ligand 1,10-phenanthroline-2,9-dicarboxylic acid (PDA). Extraordinary catalytic activity for O2 activation was obtained via screening a special pyrolysis temperature using spectroscopic and electrochemical methods. The high-spin ferric centers of highly dispersed FeC nanoclusters and abundant carbon and oxygen vacancy defects fully contributed to the inherent catalytic activity. ECL amplification was achieved by integrating the material with luminol to generate redox-active radicals in situ from dissolved O2 and simultaneously shorten the transferring distance of radicals. Tetracycline (TC), which posed a growing threat to aquatic biodiversity and environmental safety, as a model antibiotic was successfully detected with a detection limit of 3.88 nM (S/N = 3), clarifying a promising application prospect of this new effective ECL amplification strategy in biological analysis and environmental monitoring.


Biosensing Techniques , Anti-Bacterial Agents , Biosensing Techniques/methods , Electrochemical Techniques/methods , Iron , Ligands , Limit of Detection , Luminescent Measurements/methods , Luminol/chemistry , Phenanthrolines , Tetracycline
18.
Front Plant Sci ; 12: 751965, 2021.
Article En | MEDLINE | ID: mdl-34675955

The wall-associated kinase (WAK) multigene family plays critical roles in various cellular processes and stress responses in plants, however, whether WAKs are involved in salt tolerance is obscure. Herein, we report the functional characterization of a rice WAK, WAK112, whose expression is suppressed by salt. Overexpression of OsWAK112 in rice and heterologous expression of OsWAK112 in Arabidopsis significantly decreased plant survival under conditions of salt stress, while knocking down the OsWAK112 in rice increased plant survival under salt stress. OsWAK112 is universally expressed in plant and associated with cell wall. Meanwhile, in vitro kinase assays and salt tolerance analyses showed that OsWAK112 possesses kinase activity and that it plays a negative role in the response of plants to salt stress. In addition, OsWAK112 interacts with S-adenosyl-L-methionine synthetase (SAMS) 1/2/3, which catalyzes SAM synthesis from ATP and L-methionine, and promotes OsSAMS1 degradation under salt stress. Furthermore, in OsWAK112-overexpressing plants, there is a decreased SAMS content and a decreased ethylene content under salt stress. These results indicate that OsWAK112 negatively regulates plant salt responses by inhibiting ethylene production, possibly via direct binding with OsSAMS1/2/3.

19.
J Am Chem Soc ; 143(39): 16226-16234, 2021 Oct 06.
Article En | MEDLINE | ID: mdl-34553913

Understanding the chemical behavior of actinide elements is essential for the effective management and use of actinide materials. In this study, we report an unprecedented η2 (side-on) coordination of U by a cyanide in a UCN cluster, which was stabilized inside a C82 fullerene cage. UCN@Cs(6)-C82 was successfully synthesized and fully characterized by mass spectrometry, single crystal X-ray crystallography, cyclic voltammetry, spectroscopy, and theoretical calculations. The bonding analysis demonstrates significant donation bonding between CN- and uranium, and covalent interactions between uranium and the carbon cage. These effects correlate with an observed elongated cyanide C-N bond, resulting in a rare case where the oxidation state of uranium shows ambiguity between U(III) and U(I). The discovery of this unprecedented triangular configuration of the uranium cyanide cluster provides a new insight in coordination chemistry and highlights the large variety of bonding situations that uranium can have.

20.
Adv Drug Deliv Rev ; 176: 113886, 2021 09.
Article En | MEDLINE | ID: mdl-34314783

Aging is spontaneous and inevitable process in all living beings. It is a complex natural phenomenon that manifests as a gradual decline of physiological functions and homeostasis. Aging inevitably leads to age-associated injuries, diseases, and eventually death. The research on aging-associated diseases aimed at delaying, preventing or even reversing the aging process are of great significance for healthy aging and also for scientific progress. Numerous plant-derived compounds have anti-aging effects, but their therapeutic potential is limited due to their short shelf-life and low bioavailability. As the novel delivery system, nanoemulsion can effectively improve this defect. Nanoemulsions enhance the delivery of drugs to the target site, maintain the plasma concentration for a longer period, and minimize adverse reaction and side effects. This review describes the importance of nanoemulsions for the delivery of phyto-derived compounds and highlights the importance of nanoemulsions in the treatment of aging-related diseases. It also covers the methods of preparation, fate and safety of nanoemulsions, which will provide valuable information for the development of new strategies in treatment of aging-related diseases.


Aging/drug effects , Nanoparticles/administration & dosage , Phytochemicals/administration & dosage , Animals , Emulsions , Humans
...