Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Nano ; 2024 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-39327231

RESUMEN

The interaction of atomic orbitals at the interface of perovskite oxide heterostructures has been investigated for its profound impact on the band structures and electronic properties, giving rise to unique electronic states and a variety of tunable functionalities. In this study, we conducted an extensive investigation of the optical and electronic properties of epitaxial NdNiO3 synthesized on a series of single-crystal substrates. Unlike nanofilms synthesized on other substrates, NdNiO3 on SrTiO3 (NNO/STO) gives rise to a unique band structure featuring an additional unoccupied band situated above the Fermi level. Our comprehensive investigation, which incorporated a wide array of experimental techniques and density functional theory calculations, revealed that the emergence of the interfacial band structure is primarily driven by orbital hybridization between the Ti 3d orbitals of the STO substrate and the O 2p orbitals of the NNO thin film. Furthermore, exciton peaks have been detected in the optical spectra of the NNO/STO film, attributable to the pronounced electron-electron (e-e) and electron-hole (e-h) interactions propagating from the STO substrate into the NNO film. These findings underscore the substantial influence of interfacial orbital hybridization on the electronic structure of oxide thin films, thereby offering key insights into tuning their interfacial properties.

2.
Plants (Basel) ; 11(9)2022 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-35567204

RESUMEN

Luculia yunnanensis (Rubiaceae), an evergreen shrub or small tree, is endemic to China and confined to Nujiang Prefecture, Yunnan Province. This plant is of high ornamental value owing to its attractive pink flowers, sweet fragrance, and long flowering period. Due to the influence of climate change and human factors, the distribution range of L. yunnanensis has exhibited a significant shrinking trend, and it has become a vulnerable species that is in urgent need of conservation and rational utilization research. In this study, the flower transcriptome sequencing of L. yunnanensis was conducted using an Illumina HiSeq platform. We designed and developed a series of EST-SSR primers based on the flower transcriptome data of L. yunnanensis. The results showed that 98,389 unigenes were obtained from the L. yunnanensis flower transcriptome, all of which were aligned with sequences in public databases. Nr, Nt, Pfam, KOG/COG, Swiss-Prot, KEGG, and GO annotated 31,859, 13,853, 22,684, 10,947, 21,416, 9722, and 23,390 unigenes, respectively. The MISA (Microsatellite) tool was used to identify SSR loci from all unigenes, and a total of 15,384 SSRs were identified. Repeat motifs were given priority with mononucleotides, dinucleotides, and trinucleotides. The 81 primer pairs were synthesized randomly, of which 44 pairs showed effective amplification. A total of 17 primers showed stable amplification, and rich polymorphism was observed in 6 populations. We concluded via genetic diversity analysis that the average effective number of alleles (Ne), Shannon's information index (I), and polymorphism information content (PIC) were 1.925, 0.837, and 0.403, respectively. In conclusion, 17 EST-SSR primers can be used for subsequent population genetic diversity analysis and molecular-marker-assisted breeding, which is of great significance for formulating resource conservation and utilization strategies for L. yunnanensis.

3.
Front Plant Sci ; 12: 715683, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34456954

RESUMEN

Photoperiod-regulated floral transition is vital to the flowering plant. Luculia gratissima "Xiangfei" is a flowering ornamental plant with high development potential economically and is a short-day woody perennial. However, the genetic regulation of short-day-induced floral transition in L. gratissima is unclear. To systematically research the responses of L. gratissima during this process, dynamic changes in morphology, physiology, and transcript levels were observed and identified in different developmental stages of long-day- and short-day-treated L. gratissima plants. We found that floral transition in L. gratissima occurred 10 d after short-day induction, but flower bud differentiation did not occur at any stage under long-day conditions. A total of 1,226 differentially expressed genes were identified, of which 146 genes were associated with flowering pathways of sugar, phytohormones, photoperiod, ambient temperature, and aging signals, as well as floral integrator and meristem identity genes. The trehalose-6-phosphate signal positively modulated floral transition by interacting with SQUAMOSA PROMOTER-BINDING-LIKE PROTEIN 4 (SPL4) in the aging pathway. Endogenous gibberellin, abscisic acid, cytokinin, and jasmonic acid promoted floral transition, whereas strigolactone inhibited it. In the photoperiod pathway, FD, CONSTANS-LIKE 12, and nuclear factors Y positively controlled floral transition, whereas PSEUDO-RESPONSE REGULATOR 7, FLAVIN-BINDING KELCH REPEAT F-BOX PROTEIN 1, and LUX negatively regulated it. SPL4 and pEARLI1 positively affected floral transition. Suppressor of Overexpression of Constans 1 and AGAMOUSLIKE24 integrated multiple flowering signals to modulate the expression of FRUITFULL/AGL8, AP1, LEAFY, SEPALLATAs, SHORT VEGETATIVE PHASE, and TERMINAL FLOWER 1, thereby regulating floral transition. Finally, we propose a regulatory network model for short-day-induced floral transition in L. gratissima. This study improves our understanding of flowering time regulation in L. gratissima and provides knowledge for its production and commercialization.

4.
Plant J ; 107(5): 1533-1545, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34189793

RESUMEN

Rhododendrons are woody plants, famous throughout the world as having high horticultural value. However, many wild species are currently threatened with extinction. Here, we report for the first time a high-quality, chromosome-level genome of Rhododendron griersonianum, which has contributed to approximately 10% of all horticultural rhododendron varieties but which in its wild form has been evaluated as critically endangered. The final genome assembly, which has a contig N50 size of approximately 34 M and a total length of 677 M, is the highest-quality genome sequenced within the genus to date, in part due to its low heterozygosity (0.18%). Identified repeats constitute approximately 57% of the genome, and 38 280 protein-coding genes were predicted with high support. We further resequenced 31 individuals of R. griersonianum as well as 30 individuals of its widespread relative R. delavayi, and performed additional conservation genomic analysis. The results showed that R. griersonianum had lower genetic diversity (θ = 2.58e-3; π = 1.94e-3) when compared not only to R. delavayi (θ = 11.61e-3, π = 12.97e-3), but also to most other woody plants. Furthermore, three severe genetic bottlenecks were detected using both the Stairway plot and fastsimcoal2 analysis, which are thought to have occurred in the late Middle Pleistocene and the Last Glacial Maximum (LGM) period. After these bottlenecks, R. griersonianum recovered and maintained a constant effective population size (>25 000) until now. Intriguingly, R. griersonianum has accumulated significantly more deleterious mutations in the homozygous state than R. delavayi, and several deleterious mutations (e.g., in genes involved in the response to heat stress) are likely to have harmed the adaptation of this plant to its surroundings. This high-quality, chromosome-level genome and the population genomic analysis of the critically endangered R. griersonianum will provide an invaluable resource as well as insights for future study in this species to facilitate conservation and in the genus Rhododendron in general.


Asunto(s)
Cromosomas de las Plantas/genética , Genética de Población , Genoma de Planta/genética , Rhododendron/genética , Conservación de los Recursos Naturales , Demografía , Especies en Peligro de Extinción , Evolución Molecular , Genómica , Anotación de Secuencia Molecular , Mutación , Filogenia
5.
Plant Divers ; 43(6): 472-479, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35024516

RESUMEN

Rhododendron meddianum is a critically endangered species with important ornamental value and is also a plant species with extremely small populations. In this study, we used double digest restriction-site-associated DNA sequencing (ddRAD) technology to assess the genetic diversity, genetic structure and demographic history of the three extant populations of R. meddianum. Analysis of SNPs indicated that R. meddianum populations have a high genetic diversity (π = 0.0772 ± 0.0024, H E  = 0.0742 ± 0.002). Both F ST values (0.1582-0.2388) and AMOVA showed a moderate genetic differentiation among the R. meddianum populations. Meanwhile, STRUCTURE, PCoA and NJ trees indicated that the R. meddianum samples were clustered into three distinct genetic groups. Using the stairway plot, we found that R. meddianum underwent a population bottleneck about 70,000 years ago. Furthermore, demographic models of R. meddianum and its relative, Rhododendron cyanocarpum, revealed that these species diverged about 3.05 (2.21-5.03) million years ago. This divergence may have been caused by environmental changes that occurred after the late Pliocene, e.g., the Asian winter monsoon intensified, leading to a drier climate. Based on these findings, we recommend that R. meddianum be conserved through in situ, ex situ approaches and that its seeds be collected for germplasm.

6.
Front Plant Sci ; 11: 580812, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33329643

RESUMEN

Phyllanthus emblica L. is a well-known medicinal and edible plant species. Various medicinal compounds in the fruit make it an important medicinal and promising economic material. The plant is widely distributed in Southwestern and Southern China. However, due to massive deforestation and land reclamation as well as deterioration of its natural habitat in recent years, the wild resources of this species have been sharply reduced, and it is rare to see large-scale wild P. emblica forests so far. In order to effectively protect and rationally utilize this species, we investigated the genetic diversity, genetic structure, and population dynamics of 260 individuals from 10 populations of P. emblica sampled from the dry climate area in Yunnan and wet climate area in Guangxi using 20 polymorphic EST-SSR markers. We found high genetic diversity at the species level (He = 0.796) and within populations (He = 0.792), but low genetic differentiation among populations (F ST = 0.084). In addition, most genetic variation existed within populations (92.44%) compared with variation among the populations (7.56%). Meanwhile, the NJ tree, STRUCTURE, and hierarchical analysis suggested that the sampled individuals were clustered into two distinct genetic groups. In contrast, the genetic diversity of the dry climate group (He = 0.786, Na = 11.790, I = 1.962) was higher than that of the wet climate group (He = 0.673, Na = 9.060, I = 1.555), which might be attributed to the combined effects of altitude, precipitation, and geographic distance. Interestingly, only altitude and precipitation had significant pure effects on the genetic diversity, and the former was slightly stronger. In addition, DIYABC analysis suggested the effective population size of P. emblica might have contracted in the beginning of the Last Glacial Maximum. These genetic features provided vital information for the conservation and sustainable development of genetic resources of P. emblica, and they also provided new insights and guidelines for ecological restoration and economic development in dry-hot valleys of Yunnan and karst areas in Guangxi.

7.
Appl Plant Sci ; 6(6): e01162, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30131904

RESUMEN

PREMISE OF THE STUDY: To investigate the genetic background and population characteristics of Rhododendron longipedicellatum (Ericaceae), a newly discovered and critically endangered species, expressed sequence tag-simple sequence repeat markers were developed, and transferability was tested in two congeners, R. molle and R. simsii. METHODS AND RESULTS: Based on the transcriptome sequences of R. longipedicellatum, 102 primer sets were designed; 48 primer sets were successfully amplified, with 15 showing polymorphisms in 150 individuals from five extant populations of R. longipedicellatum. The number of alleles per locus ranged from four to 18, and the levels of observed and expected heterozygosity for the 15 loci varied from 0.255 to 0.913 and from 0.306 to 0.851, respectively. All 15 loci were found to amplify in R. molle and R. simsii. CONCLUSIONS: These polymorphic SSR markers can be used in conservation genetic and phylogeographic studies to elucidate the rarity and origin of R. longipedicellatum.

8.
Appl Plant Sci ; 6(7): e01169, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30131911

RESUMEN

PREMISE OF THE STUDY: A novel set of EST-SSR markers was developed for Phyllanthus emblica (Phyllanthaceae) to investigate the genetic structure and gene flow, identify novel genes of interest, and develop markers for assisted breeding. METHODS AND RESULTS: Based on the transcriptome data of P. emblica, 83 EST-SSR primer pairs were designed; 52 primer pairs were successfully amplified, with 20 showing polymorphisms in 90 individuals from three populations of P. emblica. The number of alleles per locus varied from 11 to 44. The observed and expected levels of heterozygosity for the 20 loci ranged from 0.240 to 0.868 and 0.754 to 0.933, respectively. Cross-species amplification was successful for all 20 loci in each of the two related species, P. reticulatus and Leptopus chinensis. CONCLUSIONS: These markers will be valuable for studying the population genetics and for mining genes of P. emblica, and may be useful for studies of related species.

9.
Front Plant Sci ; 9: 33, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29445383

RESUMEN

Rhododendron longipedicellatum is a narrow endemic species and a subject of urgent demand in the domestic market and overseas. Its fascinating shapes, brilliantly gilvous flowers, and unusual flowering time endow this species with extremely high ornamental value. However, only five wild populations of R. longipedicellatum surviving in limestone habitat have been found through elaborate field investigation, and the number of the populations decreases further or is even confronted with risk of extinction due to the damage of human activities. To enhance the protection and utilization of R. longipedicellatum, this study systematically investigated several important aspects of reproductive biology, including floral syndrome, pollen viability and stigma receptivity, petal color reflectance, breeding system, and pollination biology. The results demonstrated that arched styles not only create obvious herkogamy that avoide self-pollination, but also effectively reduce rain damage to the intrinsic characteristics of the stigma surface secretions, promoting the female fitness of R. longipedicellatum in poor weather. Pollen viability maintained a high level over the flowering period. The reflectance spectrum of petals had two peaks at wavelengths of 360 and 580 nm. Tests of OCI, P/O and artificial pollination all indicated that R. longipedicellatum was self-compatible and that the breeding system was mixed mating. Geitonogamy mediated by Bombus braccatus was the primary pollination route in the natural environment, which suggested that the breeding system of R. longipedicellatum might be evolving from selfing to outcrossing. The pollination vector of R. longipedicellatum was very specific, in that only B. braccatus was confirmed to deliver pollen to the stigmas. Visitation frequency was influenced by the activity rhythms and resource requirements of the different castes (i.e., sex). B. braccatus workers were the most effective pollinators because of higher visitation frequency and more effective contribution to fruit production, whereas the presence of B. braccatus males might enhance pollen flow within the population to a certain extent. Finally, these findings not only provided a reliable theoretical basis for hybridization breeding of R. longipedicellatum as parents, but also laid a solid foundation for further molecular biology studies to more broadly reveal the mechanisms of its endangerment in the future.

10.
Molecules ; 22(6)2017 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-28587077

RESUMEN

Luculia plants are famed ornamentals with sweetly fragrant flowers. Luculia yunnanensis Hu is an endemic plant from Yunnan Province, China. Headspace-solid phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS) was used to identify the volatile organic compounds (VOCs) of the different flower development stages of L. yunnanensis for the evaluation of floral volatile polymorphism. The results showed that a total of 40 compounds were identified at four different stages. The main aroma-active compounds were 3-carene, α-cubebene, α-copaene, δ-cadinene, and isoledene. Floral scent emission had the tendency to ascend first and descend in succession, reaching its peak level at the initial-flowering stage. The richest diversity of floral volatiles was detected at the full-flowering stage. Principal component analysis (PCA) indicated that the composition and its relative content of floral scent differed at the whole flower development stage. In comparison with the other two species of Luculia (L. pinceana and L. gratissima), the composition and its relative content of floral scent were also different among the tree species.


Asunto(s)
Flores/química , Extractos Vegetales/química , Rubiaceae/química , Cromatografía de Gases y Espectrometría de Masas , Microextracción en Fase Sólida/métodos , Compuestos Orgánicos Volátiles/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA