Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Nutr Food Res ; : e2400090, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38757671

RESUMEN

SCOPE: Depression, a prevalent mental disorder, has significantly impacted the lives of 350 million people, yet it holds promise for amelioration through food-derived phenolics. Raspberries, renowned globally for their delectable flavor, harbor a phenolic compound known as raspberry ketone (RK). However, the impact of RK on depressive symptoms remains ambiguous. This study aims to investigate the impact of RK on lipopolysaccharide (LPS)-induced depressed mice and elucidates its potential mechanisms, focusing on the gut-brain axis. METHODS AND RESULTS: Through behavioral tests, RK exerts a notable preventive effect on LPS-induced depression-like behaviors in mice. RK proves capable of attenuating gut inflammation, repairing gut barrier impairment, modulating the composition of the gut microbiome (Muribaculaceae, Streptococcus, Lachnospiraceae, and Akkermansia), and promoting the production of short-chain fatty acids. Furthermore, RK alleviates neuroinflammation by suppressing the TLR-4/NF-κB pathway and bolsters synaptic function by elevating levels of neurotrophic factors and synapse-associated proteins. CONCLUSION: The current study provides compelling evidence that RK effectively inhibits the TLR-4/NF-κB pathway via the gut-brain axis, leading to the improvement of LPS-induced depression-like behaviors in mice. This study addresses the research gap in understanding the antidepressant effects of RK and illuminates the potential of utilizing RK as a functional food for preventing depression.

2.
Front Plant Sci ; 14: 1255670, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37908830

RESUMEN

Introduction: Cytoplasmic male sterility (CMS) is an important tool for hybrid heterosis utilization. However, the underlying mechanisms still need to be discovered. An adequate supply of nutrients is necessary for anther development; pollen abortion would occur if the metabolism of carbohydrates were hampered. Methods: In order to better understand the relationship between carbohydrate metabolism disorder and pollen abortion in S-CMS wheat, the submicroscopic structure of wheat anthers was observed using light microscopy and transmission electron microscopy; chloroplast proteome changes were explored by comparative proteomic analysis; sugar measuring and enzyme assays were performed; and the expression patterns of carbohydrate metabolism-related genes were studied using quantitative real-time PCR (qRT-PCR) method. Results: These results indicated that the anther and microspore in S-CMS wheat underwent serious structural damage, including premature tapetum degeneration, nutritional shortage, pollen wall defects, and pollen grain malformations. Furthermore, the number of chloroplasts in the anthers of S-CMS lines decreased significantly, causing abnormal carbohydrate metabolism, and disintegration of osmiophilic granules and thylakoids. Meanwhile, some proteins participating in the Calvin cycle and carbohydrate metabolism were abnormally expressed in the chloroplasts of the S-CMS lines, which might lead to chloroplast dysfunction. Additionally, several key enzymes and genes related to carbohydrate metabolism were significantly inhibited in S-CMS. Discussion: Based on these results, we proposed a carbohydrate metabolism pathway for anther abortion in S-type cytoplasmic male sterility, which would encourage further exploration of the pollen abortion mechanisms for CMS wheat.

3.
Plant Physiol Biochem ; 202: 107921, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37544121

RESUMEN

Ferritin not only regulates the plant's iron content but also plays a significant role in the plant's development and resistance to oxidative damage. However, the role of the FER family in wheat has not been systematically elucidated. In this study, 39 FERs identified from wheat and its ancestral species were clustered into two subgroups, and gene members from the same group contain relatively conservative protein models. The structural analyses indicated that the gene members from the same group contained relatively conserved protein models. The cis-acting elements and expression patterns analysis suggested that TaFERs might play an important role combating to abiotic and biotic stresses. In the transcriptional analysis, the TaFER5D-1 gene was found to be significantly up-regulated under drought and salt stresses and was, therefore, selected to further explore the biological functions Moreover, the GFP expression assay revealed the subcellular localization of TaFER5D-1 proteins in the chloroplast, nucleus, membrane and cytoplasm. Over-expression of TaFER5D-1 in transgenic Arabidopsis lines conferred greater tolerance to drought and salt stress. According to the qRT-PCR data, TaFER5D-1 gene over-expression increased the expression of genes related to root development (Atsweet-17 and AtRSL4), iron storage (AtVIT1 and AtYSL1), and stress response (AtGolS1 and AtCOR47). So it is speculated that TaFER5D-1 could improve stress tolerance by promoting root growth, iron storage, and stress-response ability. Thus, the current study provides insight into the role of TaFER genes in wheat.


Asunto(s)
Arabidopsis , Proteínas de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Triticum/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Ferritinas/genética , Ferritinas/metabolismo , Tolerancia a la Sal , Sequías , Arabidopsis/genética , Estrés Fisiológico/genética , Hierro/metabolismo , Regulación de la Expresión Génica de las Plantas , Filogenia
4.
Sci Total Environ ; 868: 161641, 2023 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-36649766

RESUMEN

Numerous studies have demonstrated high concentrations of dissolved N2O and indirect N2O emission factors in groundwater affected by agriculture. However, the characteristics of seasonal and vertical dimensional difference in groundwater in high nitrate leaching areas are relatively lacking. We monitored the concentrations of dissolved and wellhead N2O of 23 groundwater wells over a one year period to understand the seasonal characteristics of dissolved and wellhead N2O concentrations and indirect N2O emission factors (EF5) of the shallow and deep groundwater in a high nitrogen leaching area and analyze the reasons for their differences. The mean dissolved N2O concentration in groundwater was 9.71 (9.03) µg/L, which was 1.5-fold higher during the wet season relative to the dry season. Furthermore, the leaching of soil N2O caused by rainfall and irrigation could be a pivotal factor affecting seasonal variation in the dissolved N2O. Shallow wells were found to have higher dissolved and wellhead N2O concentrations compared with deep wells in all seasons. The low wellhead N2O concentrations during the dry season were attributed to the seasonal decrease of the groundwater table and dissolved N2O concentrations. We concluded that indirect N2O emission factors did not vary in the vertical dimension but were higher during the wet season than that during the dry season. In addition, the mean indirect N2O emission factor in the groundwater was 0.025 %, which was one order of magnitude below the current IPCC value (0.25 %). Thus, we proposed that such a low indirect N2O emissions factor could imply a low indirect N2O emission potential in groundwater with high dissolved oxygen and nitrogen loads. Our study further indicated that seasonal differences in dissolved N2O concentrations and indirect N2O emission factors should be considered when estimating the potential emissions of dissolved N2O in groundwater.

6.
Nature ; 610(7931): 308-312, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36163288

RESUMEN

Exploring the subsurface structure and stratification of Mars advances our understanding of Martian geology, hydrological evolution and palaeoclimatic changes, and has been a main task for past and continuing Mars exploration missions1-10. Utopia Planitia, the smooth plains of volcanic and sedimentary strata that infilled the Utopia impact crater, has been a prime target for such exploration as it is inferred to have hosted an ancient ocean on Mars11-13. However, 45 years have passed since Viking-2 provided ground-based detection results. Here we report an in situ ground-penetrating radar survey of Martian subsurface structure in a southern marginal area of Utopia Planitia conducted by the Zhurong rover of the Tianwen-1 mission. A detailed subsurface image profile is constructed along the roughly 1,171 m traverse of the rover, showing an approximately 70-m-thick, multi-layered structure below a less than 10-m-thick regolith. Although alternative models deserve further scrutiny, the new radar image suggests the occurrence of episodic hydraulic flooding sedimentation that is interpreted to represent the basin infilling of Utopia Planitia during the Late Hesperian to Amazonian. While no direct evidence for the existence of liquid water was found within the radar detection depth range, we cannot rule out the presence of saline ice in the subsurface of the landing area.

7.
Front Plant Sci ; 13: 989271, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36147241

RESUMEN

Light is an important environmental factor influencing plant growth and development. However, artificial light supplement is difficult to spread for its high energy consumption. In recent years, rare-earth light conversion film (RPO) covering is being focused on to be a new technology to study the mechanism of light affecting plant growth and development. Compared with the polyolefin film (PO), the RPO film advanced the temperature and light environment inside the greenhouse. Ultimately, improved growth and higher yield were detected because of a higher photosynthesis, Rubisco activity and Rubisco small subunit transcription. Compared with that in the greenhouse with polyolefin film, the plant height, stem diameter and internode length of sweet pepper treated with RPO increased by 11.05, 16.96 and 25.27%, respectively. In addition, Gibberellic acid 3 (GA3), Indole-3-acetic acid (IAA), Zeatin Riboside contents were increased by 11.95, 2.84 and 16.19%, respectively, compared with that with PO film. The fruit quality was improved, and the contents of ascorbic acid (Vc), soluble protein and soluble sugar were significantly higher than those of PO film, respectively, increased by 14.29, 47.10 and 67.69%. On the basis of improved fruit quality, the yield of RPO treatment increased by 20.34% compared with PO film. This study introduces an effective and low-energy method to study the mechanism and advancing plant growth in fruit vegetables production.

8.
Int J Biol Macromol ; 220: 985-997, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36027985

RESUMEN

Calmodulin (CaM) and calmodulin-like (CML) proteins are the most prominent calcium (Ca2+) sensing proteins involved in Ca2+-signaling processes. However, the function of these calcium sensors in wheat remains unclear. In this study, 15 TaCAMs and 113 TaCMLs were identified from the wheat reference genome. The analysis of cis-acting elements and expression patterns showed that TaCAMs might play an important role in response to abiotic and biotic stresses. TaCAM2-D gene was found to be significantly upregulated under drought and salt stresses, and thus, it was selected to further explore the biological function. Moreover, TaCAM2-D was observed to be localized in the nucleus, membrane and cytoplasm. Overexpression of TaCAM2-D in Arabidopsis conferred greater tolerance to drought and salt. The prediction analysis, the yeast two-hybrid analysis, and bimolecular fluorescence complementation assay indicated that TaCAM2-D interacted with TaMPK8, which is one of the wheat mitogen-activated protein kinases. Thus, the current study provides insights into the understanding of the TaCAM and TaCML genes in wheat.


Asunto(s)
Arabidopsis , Tolerancia a la Sal , Arabidopsis/genética , Calcio/metabolismo , Calmodulina/genética , Sequías , Regulación de la Expresión Génica de las Plantas , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Tolerancia a la Sal/genética , Estrés Fisiológico/genética , Triticum/metabolismo
9.
Environ Pollut ; 309: 119714, 2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-35817299

RESUMEN

While evidence indicates that groundwater is a potential source for greenhouse gas (GHG) emissions, information for such emissions in groundwater used for irrigation is lacking. Based on 23 wells in the mid-western Guanzhong Basin of China, we investigated the dissolved CO2, N2O, and CH4 distributions in groundwater, their relationships with water indicators, and emission fluxes during flood irrigation. We found zero methane, but CO2 and N2O were 30 and 25 times, respectively, supersaturated compared to atmospheric concentrations. Dissolved N2O in groundwater was positively correlated with NO3--N (P = 0.009), while CO2 depended mainly on low pH and high dissolved inorganic carbon. The CO2 and N2O emission fluxes detected in wellheads, especially in shallow wells, implied potential emissions. Flood irrigation experiments showed that 24.55% of dissolved CO2 and 36.81% of dissolved N2O in groundwater was degassed immediately (within 12 min of irrigation) to the atmosphere. Our study demonstrates that direct GHG emissions from groundwater used for agricultural irrigation in the Guanzhong Basin are potentially equivalent to about 2-4% of the GHG emissions from 3 years of fertilizer use on these farmlands, so further research should focus on optimizing irrigation strategies to mitigate GHG emissions.


Asunto(s)
Gases de Efecto Invernadero , Agua Subterránea , Riego Agrícola , Dióxido de Carbono/análisis , China , Gases de Efecto Invernadero/análisis , Metano/análisis , Óxido Nitroso/análisis , Suelo
10.
Front Plant Sci ; 13: 934226, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35845708

RESUMEN

Sucrose non-fermenting-1-related protein kinases (SnRKs) play vital roles in plant growth and stress responses. However, little is known about the SnRK functions in wheat. In this study, 149 TaSnRKs (wheat SnRKs) were identified and were divided into three subfamilies. A combination of public transcriptome data and real-time reverse transcription-polymerase chain reaction (qRT-PCR) analysis revealed the distinct expression patterns of TaSnRKs under various abiotic and biotic stresses. TaSnRK2.4-B, a member of SnRK2s, has different expression patterns under polyethylene glycol (PEG), sodium chloride (NaCl) treatment, and high concentrations of abscisic acid (ABA) application. Yeast two-hybrid assay indicated that TaSnRK2.4-B could interact with the SnRK2-interacting calcium sensor (SCS) in wheat and play a role in the ABA-dependent pathway. Moreover, TaSnRK2.4-B might be a negative regulator in wheat against pathogen infection. The present study provides valuable information for understanding the functions of the TaSnRK family and provides recommendations for future genetic improvement in wheat stress resistance.

11.
Environ Sci Pollut Res Int ; 29(14): 20571-20592, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34741266

RESUMEN

The geographical distribution of plant resources is of great significance for studying the origin, distribution, and evolution of species. Climate and geographical factors help shape the distribution of plant species. Dendrobium is a commonly used traditional medicine and a precious economic crop in China. Owing to the over-exploitation and increasing medicinal demand of Dendrobium species plants, systematic investigation of the geographical distribution of the plants and analysis of their potential distribution under climate change are important for protecting Dendrobium plants. We adopted DIVA-GIS to analyze the georeferenced records of 76 species of the Dendrobium species collected from 2166 herbarium records. We analyzed the eco-geographical distribution and species richness of the genus Dendrobium to simulate the distribution of current and future scenarios using MaxEnt. The results revealed the distribution of Dendrobium in 30 provinces of China, with species abundance in Yunnan, Guangxi, Guangdong, and Hainan. Our model identified the following bioclimatic variables: precipitation in the driest months and the warmest seasons, isothermality, and range of annual temperature. Among them, annual precipitation is the most crucial bioclimatic variable affecting the distribution of 16 selected Dendrobium species. The change of climate in the future will lead to an increase in habitat suitability for some Dendrobium species as follows: D. officinal 2.12%, D. hancockii by 6.00%, D. hercoglossum by 8.25%, D. devonianum by 7.71%, D. henryi by 9.40%, and D. hainanense by 13.70%. By contrast, habitat suitability will dramatically decrease for other Dendrobium species: D. chrysotoxum by 0.89%, D. chrysanthum by 12.68%, D. fimbriatum by 5.07%, D. aduncum by 11.44%, D. densiflorum by 18.47%, D. aphyllum by 8.05%, D. loddigesii by 16.45%, D. nobile by 5.41%, D. falconeri by 8.73%, and D. moniliforme by 10.61%. The reduction of these species will be detrimental to the medicinal and economic value of the genus Dendrobium. Therefore, targeted development and reasonable management strategies should be adopted to conserve these valuable resources.


Asunto(s)
Cambio Climático , Dendrobium , China , Ecosistema , Temperatura
12.
Plant Dis ; 106(1): 282-288, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34253044

RESUMEN

Wheat stripe rust, an airborne fungal disease caused by Puccinia striiformis Westend. f. sp. tritici, is one of the most devastating diseases of wheat. Chinese wheat cultivar Xike01015 displays high levels of all-stage resistance (ASR) to the current predominant P. striiformis f. sp. tritici race CYR33. In this study, a single dominant gene, designated YrXk, was identified in Xike01015 conferring resistance to CYR33 with genetic analysis of F2 and BC1 populations from a cross of Mingxian169 (susceptible) and Xike01015. The specific length amplified fragment sequencing (SLAF-seq) strategy was used to construct a linkage map in the F2 population. Quantitative trait loci (QTL) analysis mapped YrXk to a 12.4-Mb segment on chromosome1 BS, explaining >86.96% of the phenotypic variance. Gene annotation in the QTL region identified three differential expressed candidate genes, TraesCS1B02G168600.1, TraesCS1B02G170200.1, and TraesCS1B02G172400.1. The qRT-PCR results showed that TraesCS1B02G172400.1 and TraesCS1B02G168600.1 are upregulated and that TraesCS1B02G170200.1 is slightly downregulated after inoculation with CYR33 in the seedling stage, which indicates that these genes may function in wheat resistance to stripe rust. The results of this study can be used in wheat breeding for improving resistance to stripe rust.


Asunto(s)
Resistencia a la Enfermedad , Enfermedades de las Plantas , Puccinia/patogenicidad , Triticum , China , Resistencia a la Enfermedad/genética , Fitomejoramiento , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Triticum/genética , Triticum/microbiología
13.
Front Plant Sci ; 12: 777494, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34868179

RESUMEN

Fusarium seedling blight (FSB) is an important disease of wheat occurring as part of the Fusarium disease complex consisting also of Fusarium head blight (FHB). 240 Chinese elite cultivars and lines were evaluated in greenhouse experiments for FSB resistance and genotyped using the wheat 90 K single nucleotide polymorphism arrays. Among them, 23 accessions had an average lesion length of less than 0.6 cm, exhibiting potential for breeding for FSB resistance in wheat. Jingfumai 1 and Yangmai 11 had a relatively high resistance to both FSB and FHB simultaneously. Six relatively stable quantitative trait loci (QTLs) were detected on chromosome arms 1DL, 3AS, 3BL, 6BL, 7AL, and Un using the mixed linear model approach, interpreting 4.83-7.53% of phenotypic variation. There was a negative correlation between the average FSB lesion length and the BLUE FHB index with a low coefficient, and resistance to both diseases appeared to be conferred by different QTLs across the same population. Four KASP markers were detected on 1DL, 3AS, 3BL, and 6BL in QTLs to facilitate marker-assisted selection. Combined with transcriptome data analysis, eight defense-related genes were considered as candidates for mapping QTLs. The resistant elite germplasm, mapped QTLs, and KASP markers developed in this study are useful resources for enhancing Fusarium seedling blight in wheat breeding.

14.
Ying Yong Sheng Tai Xue Bao ; 32(11): 3969-3976, 2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34898113

RESUMEN

Unscientific fertilization, unstable grain quality, and low profit are the key problems on wheat production in slope cropland of Western Hubei. To solve these problems, three optimized planting patterns (high nitrogen and potassium reduction, HNPR; medium nitrogen and potassium reductionm, MNPR; low nitrogen and potassium reduction, LNPR) were conducted during two consecutive years to assess their effects on wheat yield, quality, profit, and fertilizer use efficiency in Danjiangkou Reservoir area, a typical slope cropland region with wheat-maize rotation. The results showed that the application of chemical fertilizer significantly increased grain yield (GY) and wet gluten content (WGC) of wheat. Compared with the conventional planting pattern (CK), the partial factor productivity (PFPK) and agricultural fertilizer use efficiency (AFUEK) of potassium were significantly improved in the three optimized planting patterns. The dry matter amount (DMA), GY, and crude protein content (CPC) were the highest under HNPR, which increased by 9.4%, 19.4%, and 7.8% than CK, respectively. Such a result indicated that HNPR benefited wheat to exploit high yield potential. WGC and falling number (FN) were the highest under MNPR, and increased by 3.9%, and 9.3% than CK, respectively, which was suitable for high-efficiency production of medium-gluten wheat. PFPN, AFUEN, PFPK, AFUEK, and net profit were the highest under LNPR, which increased by 15.7%, 134.1%, 131.3%, 368.2%, and 37.3% than CK, respectively, while the CPC and WGC were decreased by 2.1% and 2.6% than CK, respectively, suggesting it was suitable for environment-friendly and simplified production of weak-gluten wheat production. Our results could provide a reference for wheat production in the slope cropland.


Asunto(s)
Fertilizantes , Triticum , Grano Comestible/química , Nitrógeno/análisis , Suelo
15.
ACS Appl Mater Interfaces ; 13(45): 53965-53973, 2021 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-34738807

RESUMEN

Transition-metal phosphides (TMPs) anodes for lithium ion batteries (LIBs) usually show poor rate capability and rapid capacity degradation owing to their low electronic conductivities, huge volumetric changes, as well as inferior reversibility of the discharge product Li3P. Herein, a covalent heterostructure with TMPs quantum dots anchored in N, P co-doped carbon nanocapsules (NPC) has been prepared in which the P element in TMPs is simultaneously doped into the carbon matrix. As a proof of concept, Co2P quantum dots covalently anchored in NPC (Co2P QDs/NPC) is prepared and evaluated as an anode for LIBs. The Co2P QDs/NPC electrode not only demonstrates a high capacity and an extraordinary rate performance but also delivers an impressive cyclability with a high capacity retention of 102.5% after 1600 cycles, one of the best reported values for TMPs-based electrode materials for LIBs. The covalent heterostructure can facilitate the electron/ion transfer and maintain the structural stability during the intensive cycles. Moreover, density functional theory calculations demonstrate that the interfacial covalent coupling can enhance the electrochemical reversibility of the discharge product Li3P in the charge processes via lowering the conversion reaction energies. This work presents an effective interfacial engineering strategy for developing high-performance TMPs anodes for advanced LIBs.

16.
Nat Commun ; 12(1): 4689, 2021 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-34344899

RESUMEN

Non-contact triboelectric nanogenerator (TENG) enabled for both high conversion efficiency and durability is appropriate to harvest random micro energy owing to the advantage of low driving force. However, the low output (<10 µC m-2) of non-contact TENG caused by the drastic charge decay limits its application. Here, we propose a floating self-excited sliding TENG (FSS-TENG) by a self-excited amplification between rotator and stator to achieve self-increased charge density, and the air breakdown model of non-contact TENG is given for a maximum charge density. The charge density up to 71.53 µC m-2 is achieved, 5.46 times as that of the traditional floating TENG. Besides, the high output enables it to continuously power small electronics at 3 m s-1 weak wind. This work provides an effective strategy to address the low output of floating sliding TENG, and can be easily adapted to capture the varied micro mechanical energies anywhere.

17.
Nanomicro Lett ; 13(1): 51, 2021 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-34138239

RESUMEN

In human-machine interaction, robotic hands are useful in many scenarios. To operate robotic hands via gestures instead of handles will greatly improve the convenience and intuition of human-machine interaction. Here, we present a magnetic array assisted sliding triboelectric sensor for achieving a real-time gesture interaction between a human hand and robotic hand. With a finger's traction movement of flexion or extension, the sensor can induce positive/negative pulse signals. Through counting the pulses in unit time, the degree, speed, and direction of finger motion can be judged in real-time. The magnetic array plays an important role in generating the quantifiable pulses. The designed two parts of magnetic array can transform sliding motion into contact-separation and constrain the sliding pathway, respectively, thus improve the durability, low speed signal amplitude, and stability of the system. This direct quantization approach and optimization of wearable gesture sensor provide a new strategy for achieving a natural, intuitive, and real-time human-robotic interaction.

18.
PeerJ ; 9: e10963, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33717696

RESUMEN

The ARF gene family plays important roles in intracellular transport in eukaryotes and is involved in conferring tolerance to biotic and abiotic stresses in plants. To explore the role of these genes in the development of wheat (Triticum aestivum L.), 74 wheat ARF genes (TaARFs; including 18 alternate transcripts) were identified and clustered into seven sub-groups. Phylogenetic analysis revealed that TaARFA1 sub-group genes were strongly conserved. Numerous cis-elements functionally associated with the stress response and hormones were identified in the TaARFA1 sub-group, implying that these TaARFs are induced in response to abiotic and biotic stresses in wheat. According to available transcriptome data and qRT-PCR analysis, the TaARFA1 genes displayed tissue-specific expression patterns and were regulated by biotic stress (powdery mildew and stripe rust) and abiotic stress (cold, heat, ABA, drought and NaCl). Protein interaction network analysis further indicated that TaARFA1 proteins may interact with protein phosphatase 2C (PP2C), which is a key protein in the ABA signaling pathway. This comprehensive analysis will be useful for further functional characterization of TaARF genes and the development of high-quality wheat varieties.

19.
Nanoscale ; 12(39): 20118-20130, 2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-33026018

RESUMEN

New technologies such as the Internet of Things and big data have become the strategic focus of national development in the world. Triboelectric nanogenerators are one of the important technologies to solve the problem of distributed energy supply of wireless sensor networks. Since the invention of the triboelectric nanogenerator in 2012, it has attracted extensive attention due to its light weight, low cost, high flexibility, and the diversity of its function. Different from the common rigid inelastic electrode, the elastic electrode is deformable, flexible, and stretchable, which is significant for some specific triboelectric nanogenerators to expand their function. In this review, the latest achievements and research studies of triboelectric nanogenerators based on elastic electrodes are summarized. In addition, the basic classifications, fabrication processes, material selections, structural designs, and working mechanisms regarding the elastic electrode are comprehensively and systematically reviewed. Finally, the future perspectives and remaining challenges of this field are discussed.

20.
BMC Plant Biol ; 20(1): 491, 2020 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-33109074

RESUMEN

BACKGROUND: Stripe rust (yellow rust) is a significant disease for bread wheat (Triticum aestivum L.) worldwide. A genome-wide association study was conducted on 240 Chinese wheat cultivars and elite lines genotyped with the wheat 90 K single nucleotide polymorphism (SNP) arrays to decipher the genetic architecture of stripe rust resistance in Chinese germplasm. RESULTS: Stripe rust resistance was evaluated at the adult plant stage in Pixian and Xindu in Sichuan province in the 2015-2016 cropping season, and in Wuhan in Hubei province in the 2013-2014, 2016-2017 and 2018-2019 cropping seasons. Twelve stable loci for stripe rust resistance were identified by GWAS using TASSEL and GAPIT software. These loci were distributed on chromosomes 1B, 1D, 2A, 2B, 3A, 3B, 4B (3), 4D, 6D, and 7B and explained 3.6 to 10.3% of the phenotypic variation. Six of the loci corresponded with previously reported genes/QTLs, including Sr2/Yr30/Lr27, while the other six (QYr.hbaas-1BS, QYr.hbaas-2BL, QYr.hbaas-3AL, QYr.hbaas-4BL.3, QYr.hbaas-4DL, and QYr.hbaas-6DS) are probably novel. The results suggest high genetic diversity for stripe rust resistance in this population. The resistance alleles of QYr.hbaas-2AS, QYr.hbaas-3BS, QYr.hbaas-4DL, and QYr.hbaas-7BL were rare in the present panel, indicating their potential use in breeding for stripe rust resistance in China. Eleven penta-primer amplification refractory mutation system (PARMS) markers were developed from SNPs significantly associated with seven mapped QTLs. Twenty-seven genes were predicted for mapped QTLs. Six of them were considered as candidates for their high relative expression levels post-inoculation. CONCLUSION: The resistant germplasm, mapped QTLs, and PARMS markers developed in this study are resources for enhancing stripe rust resistance in wheat breeding.


Asunto(s)
Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/inmunología , Puccinia , Triticum/genética , Alelos , China , Marcadores Genéticos , Variación Genética/genética , Estudio de Asociación del Genoma Completo , Enfermedades de las Plantas/microbiología , Polimorfismo de Nucleótido Simple/genética , Sitios de Carácter Cuantitativo/genética , Triticum/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...