RESUMEN
PURPOSE: To investigate the protective effect of L-carnitine on myocardial injury in rats with heatstroke. METHODS: orty-eight rats were randomly divided into control, heatstroke and 25, 50 and 100 mg/kg L-carnitine groups. The last three groups were treated with 25, 50 and 100 mg/kg L-carnitine, respectively, for seven successive days. Then, except for the control group, the other four groups were transferred into the environment with ambient temperature of (39.5 ± 0.4 °C) and relative humidity of (13.5 ± 2.1%) for 2 h. The core temperature (Tc), mean arterial pressure (MAP), heart rate (HR) and serum and myocardial indexes were detected. RESULTS: Compared with the heatstroke group, in the 100 mg/kg L-carnitine group, the Tc was significantly decreased, the MAP and HR were significantly increased, the serum creatine kinase, lactate dehydrogenase, alkaline phosphatase, aspartate aminotransferase, tumor necrosis factor α and interleukin 1ß levels were significantly decreased, the myocardial superoxide dismutase and glutathione peroxidase levels were significantly increased, the myocardial malondialdehyde level was significantly decreased and the cardiomyocyte apoptosis index and myocardial caspase-3 protein expression level were remarkably decreased (p < 0.05). CONCLUSIONS: The L-carnitine pretreatment can alleviate the myocardial injury in heatstroke rats through reducing the inflammatory response, oxidative stress and cardiomyocyte apoptosis.
Asunto(s)
Carnitina , Golpe de Calor , Animales , Carnitina/farmacología , Golpe de Calor/tratamiento farmacológico , Golpe de Calor/metabolismo , Malondialdehído/metabolismo , Miocardio/metabolismo , Estrés Oxidativo , RatasRESUMEN
We report here the complete and annotated genome sequence of Pectobacterium brasiliense 1692, a Gram-negative enterobacterium that can cause soft rot disease in many plant hosts.
RESUMEN
Purpose: To investigate the protective effect of L-carnitine on myocardial injury in rats with heatstroke. Methods: orty-eight rats were randomly divided into control, heatstroke and 25, 50 and 100 mg/kg L-carnitine groups. The last three groups were treated with 25, 50 and 100 mg/kg L-carnitine, respectively, for seven successive days. Then, except for the control group, the other four groups were transferred into the environment with ambient temperature of (39.5 ± 0.4 °C) and relative humidity of (13.5 ± 2.1%) for 2 h. The core temperature (Tc), mean arterial pressure (MAP), heart rate (HR) and serum and myocardial indexes were detected. Results: Compared with the heatstroke group, in the 100 mg/kg L-carnitine group, the Tc was significantly decreased, the MAP and HR were significantly increased, the serum creatine kinase, lactate dehydrogenase, alkaline phosphatase, aspartate aminotransferase, tumor necrosis factor and interleukin 1 levels were significantly decreased, the myocardial superoxide dismutase and glutathione peroxidase levels were significantly increased, the myocardial malondialdehyde level was significantly decreased and the cardiomyocyte apoptosis index and myocardial caspase-3 protein expression level were remarkably decreased (p 0.05). Conclusions: The L-carnitine pretreatment can alleviate the myocardial injury in heatstroke rats through reducing the inflammatory response, oxidative stress and cardiomyocyte apoptosis.(AU)
Asunto(s)
Animales , Ratas , Carnitina/uso terapéutico , Lesiones Cardíacas/tratamiento farmacológico , Lesiones Cardíacas/veterinaria , Insolación/tratamiento farmacológico , Insolación/veterinaria , Reperfusión Miocárdica/veterinariaRESUMEN
Abstract Purpose: To investigate the protective effect of L-carnitine on myocardial injury in rats with heatstroke. Methods: orty-eight rats were randomly divided into control, heatstroke and 25, 50 and 100 mg/kg L-carnitine groups. The last three groups were treated with 25, 50 and 100 mg/kg L-carnitine, respectively, for seven successive days. Then, except for the control group, the other four groups were transferred into the environment with ambient temperature of (39.5 ± 0.4 °C) and relative humidity of (13.5 ± 2.1%) for 2 h. The core temperature (Tc), mean arterial pressure (MAP), heart rate (HR) and serum and myocardial indexes were detected. Results: Compared with the heatstroke group, in the 100 mg/kg L-carnitine group, the Tc was significantly decreased, the MAP and HR were significantly increased, the serum creatine kinase, lactate dehydrogenase, alkaline phosphatase, aspartate aminotransferase, tumor necrosis factor α and interleukin 1β levels were significantly decreased, the myocardial superoxide dismutase and glutathione peroxidase levels were significantly increased, the myocardial malondialdehyde level was significantly decreased and the cardiomyocyte apoptosis index and myocardial caspase-3 protein expression level were remarkably decreased (p < 0.05). Conclusions: The L-carnitine pretreatment can alleviate the myocardial injury in heatstroke rats through reducing the inflammatory response, oxidative stress and cardiomyocyte apoptosis.