Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Cancer Res ; 20(6): 923-937, 2022 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-35259269

RESUMEN

Estrogen receptor-positive (ER+) metastatic tumors contribute to nearly 70% of breast cancer-related deaths. Most patients with ER+ metastatic breast cancer (MBC) undergo treatment with the estrogen receptor antagonist fulvestrant as standard of care. Yet, among such patients, metastasis in liver is associated with reduced overall survival compared with other metastasis sites. The factors underlying the reduced responsiveness of liver metastases to ER-targeting agents remain unknown, impeding the development of more effective treatment approaches to improve outcomes for patients with ER+ liver metastases. We therefore evaluated site-specific changes in MBC cells and determined the mechanisms through which the liver metastatic niche specifically influences ER+ tumor metabolism and drug resistance. We characterized ER activity of MBC cells both in vitro, using a novel system of tissue-specific extracellular matrix hydrogels representing the stroma of ER+ tumor metastatic sites (liver, lung, and bone), and in vivo, in liver and lung metastasis mouse models. ER+ metastatic liver tumors and MBC cells grown in liver hydrogels displayed upregulated expression of glucose metabolism enzymes in response to fulvestrant. Furthermore, differential ERα activity, but not expression, was detected in liver hydrogels. In vivo, increased glucose metabolism led to increased glycogen deposition in liver metastatic tumors, while a fasting-mimicking diet increased efficacy of fulvestrant treatment to reduce the metastatic burden. Our findings identify a novel mechanism of endocrine resistance driven by the liver tumor microenvironment. IMPLICATIONS: These results may guide the development of dietary strategies to circumvent drug resistance in liver metastasis, with potential applicability in other metastatic diseases.


Asunto(s)
Neoplasias de la Mama , Neoplasias Hepáticas , Animales , Neoplasias de la Mama/patología , Dieta , Femenino , Fulvestrant/efectos adversos , Glucosa , Humanos , Hidrogeles/uso terapéutico , Neoplasias Hepáticas/tratamiento farmacológico , Ratones , Receptores de Estrógenos/metabolismo , Microambiente Tumoral
2.
Nutrients ; 13(11)2021 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-34836157

RESUMEN

Per- and polyfluoroalkyl substances (PFAS) are synthetic chemicals utilized in various industrial settings and include products such as flame retardants, artificial film-forming foams, cosmetics, and non-stick cookware, among others. Epidemiological studies suggest a link between increased blood PFAS levels and prostate cancer incidence, but the mechanism through which PFAS impact cancer development is unclear. To investigate the link between PFAS and prostate cancer, we evaluated the impact of metabolic alterations resulting from a high-fat diet combined with PFAS exposure on prostate tumor progression. We evaluated in vivo prostate cancer xenograft models exposed to perfluorooctane sulfonate (PFOS), a type of PFAS compound, and different diets to study the effects of PFAS on prostate cancer progression and metabolic activity. Metabolomics and transcriptomics were used to understand the metabolic landscape shifts upon PFAS exposure. We evaluated metabolic changes in benign or tumor cells that lead to epigenomic reprogramming and altered signaling, which ultimately increase tumorigenic risk and tumor aggressiveness. Our studies are the first in the field to provide new and clinically relevant insights regarding novel metabolic and epigenetic states as well as to support the future development of effective preventative and therapeutic strategies for PFAS-induced prostate cancers. Our findings enhance understanding of how PFAS synergize with high-fat diets to contribute to prostate cancer development and establish an important basis to mitigate PFAS exposure.


Asunto(s)
Ácidos Alcanesulfónicos/toxicidad , Dieta Alta en Grasa , Fluorocarburos/toxicidad , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Ácidos Sulfónicos/toxicidad , Acetilación , Animales , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Progresión de la Enfermedad , Xenoinjertos , Histonas/metabolismo , Humanos , Masculino , Ratones , Receptores Activados del Proliferador del Peroxisoma/metabolismo , Transducción de Señal/efectos de los fármacos
3.
Nutrients ; 13(10)2021 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-34684335

RESUMEN

About 20-30% of premenopausal women have metabolic syndrome, and the number is almost double in postmenopausal women, and these women have an increased risk of hepatosteatosis. Postmenopausal women with metabolic syndrome are often treated with hormone replacement therapy (HRT), but estrogens in currently available HRTs increase the risk of breast and endometrial cancers and Cardiovascular Disease. Therefore, there is a critical need to find safer alternatives to HRT to improve postmenopausal metabolic health. Pathway preferential estrogen 1 (PaPE-1) is a novel estrogen receptor ligand that has been shown to favorably affect metabolic tissues without adverse effects on reproductive tissues. In this study, we have examined the effects of PaPE-1 on metabolic health, in particular, examining its effects on the liver transcriptome and on plasma metabolites in two different mouse models: diet-induced obesity (DIO) and leptin-deficient (ob/ob) mice. PaPE-1 significantly decreased liver weight and lipid accumulation in both DIO and ob/ob models and lowered the expression of genes associated with fatty acid metabolism and collagen deposition. In addition, PaPE-1 significantly increased the expression of mitochondrial genes, particularly ones associated with the electron transport chain, suggesting an increase in energy expenditure. Integrated pathway analysis using transcriptomics and metabolomics data showed that PaPE-1 treatment lowered inflammation, collagen deposition, and pathways regulating fatty acid metabolism and increased metabolites associated with glutathione metabolism. Overall, our findings support a beneficial metabolic role for PaPE-1 and suggest that PaPE-1 may protect postmenopausal women from fatty liver disease without increasing reproductive cancer risk.


Asunto(s)
Dieta Alta en Grasa , Estrógenos/uso terapéutico , Hígado Graso/etiología , Hígado Graso/prevención & control , Ovariectomía , Animales , Peso Corporal/efectos de los fármacos , Colágeno/metabolismo , Receptor alfa de Estrógeno/metabolismo , Estrógenos/farmacología , Hígado Graso/complicaciones , Hígado Graso/genética , Células Hep G2 , Hepatocitos/metabolismo , Humanos , Inflamación/patología , Ligandos , Metabolismo de los Lípidos , Hígado/metabolismo , Metabolómica , Ratones Endogámicos C57BL , Ratones Obesos , Obesidad/complicaciones , Obesidad/genética , Tamaño de los Órganos/efectos de los fármacos , Transcriptoma/genética , Aumento de Peso
4.
Metabolites ; 11(6)2021 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-34070374

RESUMEN

Coronary microvascular disease (CMD) is a common form of heart disease in postmenopausal women. It is not due to plaque formation but dysfunction of microvessels that feed the heart muscle. The majority of the patients do not receive a proper diagnosis, are discharged prematurely and must go back to the hospital with persistent symptoms. Because of the lack of diagnostic biomarkers, in the current study, we focused on identifying novel circulating biomarkers of CMV that could potentially be used for developing a diagnostic test. We hypothesized that plasma metabolite composition is different for postmenopausal women with no heart disease, CAD, or CMD. A total of 70 postmenopausal women, 26 healthy individuals, 23 individuals with CMD and 21 individuals with CAD were recruited. Their full health screening and tests were completed. Basic cardiac examination, including detailed clinical history, additional disease and prescribed drugs, were noted. Electrocardiograph, transthoracic echocardiography and laboratory analysis were also obtained. Additionally, we performed full metabolite profiling of plasma samples from these individuals using gas chromatography-mass spectrometry (GC-MS) analysis, identified and classified circulating biomarkers using machine learning approaches. Stearic acid and ornithine levels were significantly higher in postmenopausal women with CMD. In contrast, valine levels were higher for women with CAD. Our research identified potential circulating plasma biomarkers of this debilitating heart disease in postmenopausal women, which will have a clinical impact on diagnostic test design in the future.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...