Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 27
1.
Chembiochem ; : e202400346, 2024 May 22.
Article En | MEDLINE | ID: mdl-38775416

Multi-enzyme cascade catalysis has become an important technique for chemical reactions used in manufacturing and scientific study. In this research, we designed a four-enzyme integrated catalyst and used it to catalyse the racemization reaction of cyclic chiral amines, where monoamine oxidase (MAO) catalyses the selective oxidation of 1-methyl-1,2,3,4-tetrahydroisoquinoline (MTQ), imine reductase (IRED) catalyses the selective reduction of 1-methyl-3,4-dihydroisoquinoline (MDQ), formate dehydrogenase (FDH) is used for the cyclic regeneration of cofactors, and catalase (CAT) is used for decomposition of oxidative reactions. The four enzymes were immobilized via polydopamine (PDA)-encapsulated dendritic organosilica nanoparticles (DONs) as carriers, resulting in the amphiphilic core-shell catalysts. The hydrophilic PDA shell ensures the dispersion of the catalyst in water, and the hydrophobic DON core creates a microenvironment with the spatial confinement effect of the organic substrate and the preconcentration effect to enhance the stability of the enzymes and the catalytic efficiency. The core-shell structure improves the stability and reusability of the catalyst and rationally arranges the position of different enzymes according to the reaction sequence to improve the cascade catalytic performance and cofactor recovery efficiency.

2.
ACS Synth Biol ; 13(4): 1100-1104, 2024 Apr 19.
Article En | MEDLINE | ID: mdl-38587465

A proline-based artificial enzyme is prepared by grafting the l-proline moieties onto the surface of bovine serum albumin (BSA) protein through atom transfer radical polymerization (ATRP). The artificial enzyme, the BSA-PolyProline conjugate, prefers to catalyze the formation of unsaturated ketones rather than ß-hydroxy ketones in the reaction between acetone and aldehydes, which is difficult to achieve in free-proline catalysis. The altered reaction selectivity is ascribed to the locally concentrated l-proline moieties surrounding the BSA molecule, indicating a microenvironmental effect-induced switching of the reaction mechanism. Taking advantage of this selectivity, we used this artificial enzyme in conjunction with a natural enzyme, old yellow enzyme 1 (OYE1), to demonstrate a simple synthesis of different aliphatic ketones from acetone and aldehydes via tandem catalysis.


Acetone , Ketones , Proline , Aldehydes , Catalysis , Stereoisomerism
3.
Adv Sci (Weinh) ; : e2400730, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38654621

Metal-enzyme integrated catalysts (MEICs) that combine metal and enzyme offer great potential for sustainable chemoenzymatic cascade catalysis. However, rational design and construction of optimal microenvironments and accessible active sites for metal and enzyme in individual nanostructures are necessary but still challenging. Herein, Pd nanoparticles (NPs) and Candida antarctica lipase B (CALB) are co-immobilized into the pores and surfaces of covalent organic frameworks (COFs) with tunable functional groups, affording Pd/COF-X/CALB (X = ONa, OH, OMe) MEICs. This strategy can regulate the microenvironment around Pd NPs and CALB, and their interactions with substrates. As a result, the activity of the COF-based MEICs in catalyzing dynamic kinetic resolution of primary amines is enhanced and followed COF-OMe > COF-OH > COF-ONa. The experimental and simulation results demonstrated that functional groups of COFs modulated the conformation of CALB, the electronic states of Pd NPs, and the affinity of the integrated catalysts to the substrate, which contributed to the improvement of the catalytic activity of MEICs. Further, the MEICs are prepared using COF with hollow structure as support material, which increased accessible active sites and mass transfer efficiency, thus improving catalytic performance. This work provides a blueprint for rational design and preparation of highly active MEICs.

4.
J Org Chem ; 89(7): 4818-4825, 2024 04 05.
Article En | MEDLINE | ID: mdl-38536102

The enantioselective synthesis of chiral diarylmethanols is highly desirable in synthetic chemistry and the pharmaceutical industry, but it remains challenging, especially in terms of green and sustainable production. Herein, a resin-immobilized palladium acetate catalyst was fabricated with high activity, stability, and reusability in Suzuki cross-coupling reaction of acyl halides with boronic acids, and the coimmobilization of alcohol dehydrogenase and glucose dehydrogenase on resin supports was also conducted for asymmetric bioreduction of diaryl ketones. Experimental results revealed that the physicochemical properties of the resins and the immobilization modes played important roles in affecting their catalytic performances. These two catalysts enabled the construction of a chemoenzymatic cascade for the enantioselective synthesis of a series of chiral diarylmethanols in high yields (83-90%) and enantioselectivities (87-98% ee). In addition, the asymmetric synthesis of the antihistaminic and anticholinergic drugs (S)-neobenodine and (S)-carbinoxamine was also achieved from the chiral diarylmethanol precursors, demonstrating the synthetic utility of the chemoenzymatic cascade.


Alcohol Dehydrogenase , Palladium , Palladium/chemistry , Stereoisomerism , Molecular Structure , Catalysis
5.
ChemSusChem ; : e202301868, 2024 Feb 11.
Article En | MEDLINE | ID: mdl-38342756

Photocatalysis is an eco-friendly method to regenerate nicotinamide (NADH) cofactors, which is essential for biotransformation over oxidoreductases. Organic polymers exhibit high stability, biocompatibility and functional designability as photocatalysts, but still suffering from rapid charge recombination. Herewith the heteroatom structural engineering of donor-π-acceptor (D-π-A) conjugated porous polymers were conducted to promote charge transfer and photocatalytic NADH regeneration. The electron delocalization of polymer photocatalysts can be readily tuned by changing the electron density of the donor unit, leading to faster charge separation and better photocatalytic performance. The optimum sulfur-doped polymer exhibits the highest NADH regeneration yield of 47.4 % in 30 min and 94.1 % in 4 h, which can drive the biocatalytic C=C bond reduction of 2-cyclohexen-1-one by ene-reductase, giving the corresponding cyclohexanone yield of 96.7 % in 10 h. Moreover, the oxygen-doped polymer, from biomass derived 2,5-diformylfuran, exhibits comparable photocatalytic activity to the sulfur-doped CPP, suggesting the potential of furan as alternative donor unit to thiophene.

6.
Nat Commun ; 15(1): 71, 2024 01 02.
Article En | MEDLINE | ID: mdl-38167391

Chemoenzymatic cascade catalysis has emerged as a revolutionary tool for streamlining traditional retrosynthetic disconnections, creating new possibilities for the asymmetric synthesis of valuable chiral compounds. Here we construct a one-pot concurrent chemoenzymatic cascade by integrating organobismuth-catalyzed aldol condensation with ene-reductase (ER)-catalyzed enantioselective reduction, enabling the formal asymmetric α-benzylation of cyclic ketones. To achieve this, we develop a pair of enantiocomplementary ERs capable of reducing α-arylidene cyclic ketones, lactams, and lactones. Our engineered mutants exhibit significantly higher activity, up to 37-fold, and broader substrate specificity compared to the parent enzyme. The key to success is due to the well-tuned hydride attack distance/angle and, more importantly, to the synergistic proton-delivery triade of Tyr28-Tyr69-Tyr169. Molecular docking and density functional theory (DFT) studies provide important insights into the bioreduction mechanisms. Furthermore, we demonstrate the synthetic utility of the best mutants in the asymmetric synthesis of several key chiral synthons.


Aldehydes , Ketones , Molecular Structure , Molecular Docking Simulation , Aldehydes/chemistry , Catalysis , Ketones/chemistry , Stereoisomerism
7.
Biomater Sci ; 11(23): 7678-7691, 2023 Nov 21.
Article En | MEDLINE | ID: mdl-37870399

Orally administered baicalein-decorated zinc phosphates (ZnBM) were engineered for mucosal barrier improvement and intestinal inflammation relief. ZnBM with a size of 1.78 µm comprised 5.58 wt% baicalein and 13.17 wt% zinc. The incorporation of baicalein endowed ZnBM with excellent radical scavenging activities. ZnBM exhibited good stability with negligible zinc release in PBS solution for 2 days, and 32.82% of the zinc could reach the gut. In addition, ZnBM polarized macrophages into the anti-inflammatory M2 type and effectively scavenged intracellular reactive oxygen species (ROS) of lipopolysaccharide (LPS)-treated RAW264.7. Meanwhile, ZnBM effectively scavenged intracellular ROS of phorbol 12-myristate 13-acetate (PMA)-induced Caco-2 cells and exerted a reparative effect on the LPS-damaged Caco-2 monolayer, causing an obvious improvement of the barrier function. Reduced systemic exposure to FITC-dextran was observed to illustrate barrier restoration by ZnBM, which was achieved through upregulation of tight junction protein expression. Notably, the commonly used clinical drug 5-aminosalicylic acid is toxic to the liver and kidneys, and commercial ZnO caused the death of mice during treatment. Apparently, the therapeutic effect of ZnBM was significantly better than that of baicalein alone in chronic colitis. Overall, ZnBM exhibited outstanding therapeutic efficacy and is expected to treat colitis due to its effectiveness, biosecurity, facile preparation, and easy storage.


Colitis , Inflammatory Bowel Diseases , Humans , Mice , Animals , Reactive Oxygen Species/metabolism , Caco-2 Cells , Zinc/metabolism , Lipopolysaccharides/pharmacology , Inflammatory Bowel Diseases/drug therapy , Inflammatory Bowel Diseases/metabolism , Oxidative Stress , Intestinal Mucosa/metabolism , Phosphates , Mice, Inbred C57BL , Disease Models, Animal
8.
Addict Biol ; 28(10): e13311, 2023 10.
Article En | MEDLINE | ID: mdl-37753568

Over the past few years, there has been increasing evidence highlighting the strong connection between gut microbiota and overall well-being of the host. This has led to a renewed emphasis on studying and addressing substance use disorder from the perspective of brain-gut axis. Previous studies have suggested that alcohol, food, and cigarette addictions are strongly linked to gut microbiota and faecal microbiota transplantation or the use of probiotics achieved significant efficacy. Unfortunately, little is known about the relationship between drug abuse and gut microbiota. This paper aims to reveal the potential correlation between gut microbiota and drug abuse and to develop an accurate identification model for drug-related faeces samples by machine learning. Faecal samples were collected from 476 participants from three regions in China (Shanghai, Yunnan, and Shandong). Their gut microbiota information was obtained using 16S rRNA gene sequencing, and a substance use disorder identification model was developed by machine learning. Analysis revealed a lower diversity and a more homogeneous gut microbiota community structure among participants with substance use disorder. Bacteroides, Prevotella_9, Faecalibacterium, and Blautia were identified as important biomarkers associated with substance use disorder. The function prediction analysis revealed that the citrate and reductive citrate cycles were significantly upregulated in the substance use disorder group, while the shikimate pathway was downregulated. In addition, the machine learning model could distinguish faecal samples between substance users and nonsubstance users with an AUC = 0.9, indicating its potential use in predicting and screening individuals with substance use disorder within the community in the future.


Gastrointestinal Microbiome , Substance-Related Disorders , Humans , Gastrointestinal Microbiome/genetics , RNA, Ribosomal, 16S/genetics , Genes, rRNA , China , Citrates
9.
ACS Appl Mater Interfaces ; 15(6): 7928-7938, 2023 Feb 15.
Article En | MEDLINE | ID: mdl-36731117

A three-in-one heterogeneous catalyst (UPO@dTiO2-CD) was fabricated by grafting cyclodextrins (CDs) on the dehiscent TiO2 (dTiO2) surface and subsequently immobilizing unspecific peroxygenase (rAaeUPO), which exhibited double enhanced electron/mass transfer in photo-enzymatic enantioselective hydroxylation of the C-H bond. The tunable anatase/rutile phase ratio and dehiscent mesoporous architectures of dTiO2 and the electron donor feature and hydrophobic inner cavity of the CDs are independently responsible for accelerating both electron and mass transfer. The coordination of the photocatalytic and enzymatic steps was achieved by structural and compositional regulation. The optimized UPO@dTiO2-CD not only displayed high catalytic efficiency (turnover number and turnover frequency of rAaeUPO up to >65,000 and 91 min-1, respectively) but also exhibited high stability and reusability.


Cyclodextrins , Hydroxylation , Titanium/chemistry , Electron Transport
10.
Front Biosci (Landmark Ed) ; 28(1): 4, 2023 01 10.
Article En | MEDLINE | ID: mdl-36722270

BACKGROUND: Ovarian cancer (OV) is a severe and common gynecological disease. Ferroptosis can regulate the progression and invasion of tumors. The immune system is a decisive factor in cancer. The present study aimed to use gene expression data to establish an immunity and ferroptosis-related risk score model as a prognostic biomarker to predict clinical outcomes and the immune microenvironment of OV. METHODS: Common gene expression data were searched from the Gene Expression Omnibus and The Cancer Genome Atlas databases. Immunity-related genes and ferroptosis-related genes were searched and downloaded from the ImmPort and FerrDb databases, followed by the analysis of the overall survival of patients with OV and the identification of genes. Subsequently, the status of the infiltration of immune cells and the association between immune checkpoints and risk score were assessed. RESULTS: A total of 10 prognostic genes (C5AR1, GZMB, IGF2R, ISG20, PPP3CA, STAT1, TRIM27, TSHR, RB1, and EGFR) were included in the immunity and ferroptosis-related risk score model. The high-risk group had a higher infiltration of immune cells. The risk score, an independent prognostic feature of OV was negatively associated with each immune checkpoint. The risk score may thus help to predict the response to immunotherapy. CONCLUSIONS: The immunity and ferroptosis-related risk score model is an independent prognostic factor for OV. The established risk score may help to predict the response of patients to immunotherapy.


Ferroptosis , Ovarian Neoplasms , Humans , Female , Ferroptosis/genetics , Ovarian Neoplasms/genetics , Immunotherapy , Tumor Microenvironment/genetics
11.
Front Nutr ; 9: 953745, 2022.
Article En | MEDLINE | ID: mdl-36299985

Objective: To analyze the related factors of the postpartum thyroid function in women with overt hypothyroidism (OH)/subclinical hypothyroidism (SCH) and explore the effects of vitamin D categories. Methods: Thyroid hormones, thyroid autoantibody, and serum 25OHD levels were continuously recorded from the first trimester of pregnancy (T1) to the 12th postpartum month. Logistic regression analysis and Cox regression analysis were used to screen the related factors of postpartum thyroid function, and the Latent Class Growth Model was performed to analyze the trajectory characteristics of serum 25OHD levels. Results: Totally, 252 pregnant women with OH/SCH were enrolled in the study. In the 12th month postpartum, 36.5% of the patients improved thyroid function, 37.3% continued hypothyroidism, and 26.2% developed thyroid dysfunction. Vitamin D sufficiency, positive TPOAb, and positive TgAb in T1 were independent prognostic factors of postpartum thyroid function. Vitamin D sufficiency in T1 was illustrated as an independent factor of the improved postpartum thyroid function, but the protective effect for the developed postpartum thyroid dysfunction was only confirmed in TPOAb-positive patients. Cox regression analysis further confirmed the effects of vitamin D categories. Notably, the high-level 25OHD trajectory during pregnancy and postpartum could predict improved postpartum thyroid function and decrease the risk of developed postpartum thyroid dysfunction. Conclusion: Appropriate vitamin D nutrition during pregnancy and postpartum may be beneficial to postpartum thyroid function.

12.
Front Endocrinol (Lausanne) ; 13: 876960, 2022.
Article En | MEDLINE | ID: mdl-35663304

Diabetic nephropathy (DN) is regarded as the leading cause of end-stage renal disease worldwide and lacks novel therapeutic targets. To screen and verify special biomarkers for glomerular injury in patients with DN, fifteen datasets were retrieved from the Gene Expression Omnibus (GEO) database, correspondingly divided into training and testing cohorts and then merged. Using the limma package, 140 differentially expressed genes (DEGs) were screened out between 81 glomerular DN samples and 41 normal ones from the training cohort. With the help of the ConsensusClusterPlus and WGCNA packages, the 81 glomerular DN samples were distinctly divided into two subclusters, and two highly associated modules were identified. By using machine learning algorithms (LASSO, RF, and SVM-RFE) and the Venn diagram, two overlapping genes (PRKAR2B and TGFBI) were finally determined as potential biomarkers, which were further validated in external testing datasets and the HFD/STZ-induced mouse models. Based on the biomarkers, the diagnostic model was developed with reliable predictive ability for diabetic glomerular injury. Enrichment analyses indicated the apparent abnormal immune status in patients with DN, and the two biomarkers played an important role in the immune microenvironment. The identified biomarkers demonstrated a meaningful correlation between the immune cells' infiltration and renal function. In conclusion, two robust genes were identified as diagnostic biomarkers and may serve as potential targets for therapeutics of DN, which were closely associated with multiple immune cells.


Diabetes Mellitus , Diabetic Nephropathies , Algorithms , Animals , Biomarkers , Diabetic Nephropathies/etiology , Diabetic Nephropathies/genetics , Humans , Machine Learning , Mice
13.
Appl Biochem Biotechnol ; 194(11): 4999-5016, 2022 Nov.
Article En | MEDLINE | ID: mdl-35687305

The application of immobilized enzymes in pharmaceutical and bulk chemical production has been shown to be economically viable. We demonstrate the exceptional performance of a method that immobilizes the old yellow enzyme YqjM and glucose dehydrogenase (GDH) on resin for the asymmetric hydrogenation (AH) of C = C bonds in a SpinChem reactor. When immobilized YqjM and GDH are reused 10 times, the conversion of 2-methylcyclopentenone could reach 78%. Which is because the rotor of the SpinChem reactor effectively reduces catalyst damage caused by shear force in the reaction system. When the substrate concentration is 175 mM, an 87% conversion of 2-methylcyclopentenone is obtained. The method is also observed to perform well for the AH of C = C bonds in other unsaturated carbonyl compounds with the SpinChem reactor. Thus, this method has great potential for application in the enzymatic production of chiral compounds.


Glucose 1-Dehydrogenase , NADPH Dehydrogenase , Glucose 1-Dehydrogenase/metabolism , Hydrogenation , NADPH Dehydrogenase/metabolism , Enzymes, Immobilized , Pharmaceutical Preparations
14.
Angew Chem Int Ed Engl ; 61(21): e202202264, 2022 05 16.
Article En | MEDLINE | ID: mdl-35285128

The direct asymmetric reductive amination of heteroaryl ketones has been a long-standing synthetic challenge. Here we report the engineering of an amine dehydrogenase (AmDH) from Jeotgalicoccus aerolatus for the asymmetric synthesis of chiral α-(hetero)aryl primary amines in excellent conversions (up to 99 %) and enantioselectivities (up to 99 % ee). The best AmDH variant (Ja-AmDH-M33 ) exhibited high activity and specificity toward alkyl (hetero)aryl ketones, even for those bearing a bulky alkyl chain. An efficient directed evolution approach based on molecular docking was implemented to enlarge the active pocket with a more hydrophobic entrance, which is responsible for the high activity. The Ja-AmDH-M33 was also used for preparative-scale synthesis of pharmaceutically relevant amines and a key intermediate of chiral pincer ligands, which highlighted its practical application in synthetic chemistry.


Ketones , Oxidoreductases , Amination , Amines/chemistry , Ketones/chemistry , Molecular Docking Simulation , Oxidoreductases/metabolism , Stereoisomerism
15.
Org Lett ; 24(14): 2590-2595, 2022 04 15.
Article En | MEDLINE | ID: mdl-35357843

A three-step process for the enantioselective assembly of cis-fused octahydrophenanthrenes with a quaternary stereocenter is reported. This synthetic strategy relies on a regioselective γ-alkylation, a one-pot sequence of asymmetric hydrogenation and oxidation, and an intramolecular enolate arylation to facilitate the rapid and enantioselective construction of cis-fused octahydrophenanthrene scaffolds with an arylated all-carbon quaternary stereocenter concisely and efficiently.


Carbon , Alkylation , Oxidation-Reduction , Stereoisomerism
16.
ACS Appl Mater Interfaces ; 14(2): 2881-2892, 2022 Jan 19.
Article En | MEDLINE | ID: mdl-34985854

Cascade catalysis that combines chemical catalysis and biocatalysis has received extensive attention in recent years, especially the integration of metal nanoparticles (MNPs) with enzymes. However, the compatibility between MNPs and enzymes, and the stability of the integrated nanocatalyst should be improved to promote the application. Therefore, in this study, we proposed a strategy to space-separately co-immobilize MNPs and enzymes to the pores and surface of a highly stable covalent organic framework (COF), respectively. Typically, Pd NPs that were prepared by in situ reduction with triazinyl as the nucleation site were distributed in COF (Tz-Da), and organophosphorus hydrolase (OPH) was immobilized on the surface of Tz-Da by a covalent method to improve its stability. The obtained integrated nanocatalyst Pd@Tz-Da@OPH showed high catalytic efficiency and reusability in the cascade degradation of organophosphate nerve agents. Furthermore, the versatility of the preparation strategy of COF-based integrated nanocatalyst has been preliminarily expanded: (1) Pd NPs and OPH were immobilized in the triazinyl COF (TTB-DHBD) with different pore sizes for cascade degradation of organophosphate nerve agent and the particle size of MNPs can be regulated. (2) Pt NPs and glucose oxidase were immobilized in COF (Tz-Da) to obtain an integrated nanocatalyst for efficient colorimetric detection of phenol.


Aryldialkylphosphatase/metabolism , Biocompatible Materials/metabolism , Metal Nanoparticles/chemistry , Metal-Organic Frameworks/metabolism , Nerve Agents/metabolism , Organophosphates/metabolism , Aryldialkylphosphatase/chemistry , Biocatalysis , Biocompatible Materials/chemistry , Materials Testing , Metal-Organic Frameworks/chemistry , Molecular Structure , Nerve Agents/chemistry , Organophosphates/chemistry , Palladium/chemistry , Palladium/metabolism
17.
Nanomaterials (Basel) ; 13(1)2022 Dec 29.
Article En | MEDLINE | ID: mdl-36616072

Vertically aligned ZnO: Ga nanotowers can be directly synthesized on a glass substrate with a ZnO seed film via the chemical bath method. A novel heterostructure of ZnO: Ga@ITO@Ag nanotowers was subsequently deposited in the ITO layer and Ag nanoparticles via the facile two-step ion-sputtering processes on the ZnO: Ga nanotowers. The appropriate ion-sputtering times of the ITO layer and Ag nanoparticles can benefit the fabrication of ZnO: Ga@ITO@Ag nanotowers with higher surface-enhanced Raman scattering (SERS) enhancement in detecting rhodamine 6G (R6G) molecules. Compared with ZnO: Ga@Ag nanotowers, ZnO: Ga@ITO@Ag nanotowers exhibited a high SERS enhancement factor of 2.25 × 108 and a lower detection limit (10-14 M) for detecting R6G molecules. In addition, the ITO layer used as an intermediate layer between ZnO: Ga nanotowers and Ag nanoparticles can improve SERS enhancement, sensitivity, uniformity, reusability, detection limit, and stability for detecting amoxicillin molecules. This phenomenon shall be ascribed to the ITO layer exhibiting a synergistic Raman enhancement effect through interfacial charge transfer for enhancing SERS activity. As a result, ZnO: Ga@ITO@Ag nanotowers can construct a three-dimensional SERS substrate for potential applications in environmentally friendly and cost-effective chemical or drug detection.

18.
ACS Appl Mater Interfaces ; 13(3): 4305-4315, 2021 Jan 27.
Article En | MEDLINE | ID: mdl-33427448

Utilizing the abundant and renewable solar energy to address the global energy shortage and water scarcity is promising. Great effort has been devoted to photothermal conversion for its typically full-spectrum utilization and high efficiency. Here, the coral-like micro/nanostructure was fabricated on an aluminum sheet by a facile laser direct writing technology. The nanocluster and microscale branches of corals endowed this black aluminum with broad-band plasmonic absorption and rapid heat transfer from the light absorption region to substrate. The black aluminum achieved ultrahigh solar absorbance of over 92.6% (>95.1% in the visible range) and excellent light heating ability (>90.6 °C under 1.0 sun). With good photothermal properties, this plasmonic absorber was used in a state-of-the-art eight-layer membrane distillation system, producing a water yield of up to 2.40 kg m-2 h-1 and a high solar conversion efficiency of 166.5% under 1-sun irradiation. Photothermal electricity was also achieved based on this system with a thermoelectric generator, with a water yield of 0.89 kg m-2 h-1 and a maximum electrical power output of 7.21 µW cm-2 under 1.0 sun. Considering the excellent performance of the plasmon-enhanced black aluminum, this work provides an alternative and feasible route toward high-efficient utilization of the solar energy.

19.
Complement Ther Clin Pract ; 42: 101288, 2021 Feb.
Article En | MEDLINE | ID: mdl-33310625

BACKGROUND: and purpose: Depression is a common mental disorder and reduces quality of life. As traditional Chinese medicine constitution (TCMC) has become an increasingly popular complementary and alternative approach for early detection and treatment of disease, this study investigated the relationship of female-related factors and constitution with depression. MATERIALS AND METHODS: This cross-sectional study included 1423 women from the Taiwan Biobank. A questionnaire of 44 items was used covering a variety of factors and the Body Constitution Questionnaire. The constitution types were divided into Yang-deficiency, Yin-deficiency, and Phlegm stasis. RESULTS: Yang (p = 0.022) or Yin (p = 0.017) deficiencies, being single (p = 0.027-0.033), previous use of women's health supplements (p = 0.005-0.008), and smoking (p = 0.033-0.036) were associated with a higher risk of depression. CONCLUSION: Integration of TCMC with Western medicine may be an alternative option towards depression prevention and alleviation.


Medicine, Chinese Traditional , Quality of Life , Adult , Body Constitution , Cross-Sectional Studies , Depression , Female , Humans
20.
Langmuir ; 37(1): 417-427, 2021 01 12.
Article En | MEDLINE | ID: mdl-33347295

Although loose nanofiltration membranes have been extensively studied for dye desalination, high-throughput membranes with antifouling and antibacterial properties are still highly needed. In this study, a zwitterion-modified molybdenum disulfide (MoS2) dual-layer loose nanofiltration membrane was prepared with the integration of antibacterial, antifouling, and high-flux properties. To be specific, MoS2 nanosheets were loaded on a polyacrylonitrile ultrafiltration membrane through pressure-assisted self-assembly. Then, poly (sulfobetaine methacrylate) (PSBMA) was coated on the surface of the MoS2 membrane via a simple polydopamine (PDA)-assisted one-step codeposition to prepare PSBMA/PDA/MoS2 nanofiltration membranes. Elemental and morphological analyses confirmed the formation of the MoS2 layer and PSBMA/PDA coating. In addition, the effect of the PSBMA amount and codeposition time on surface properties and membrane performances was investigated. Under optimum conditions, the as-prepared membrane showed excellent water permeance of 262 LMH/bar with good dye rejection (99.8% for methylene blue) and salt permeability, as well as excellent antifouling and antibacterial properties benefiting from the synergy of PSBMA/PDA coating layers and MoS2 layers.

...