Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Anim Sci J ; 94(1): e13871, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37720923

RESUMEN

Our objective was to determine effects of feeding lamb's peony byproducts, including stem and leaves (PSL), root (PR), and seeds meal (PSM), on growth, rumen fermentation, slaughter parameters, and meat quality. Sixty-four lambs (14.0 ± 2.1 kg) were allocated into eight treatments based on BW: no additives (CON), 0.15% aureomycin (CONA), low/high levels of PSL (5%/10% PSL replaced 5%/10% Chinese hay), PR (basal diet with 0.5%/1.0% PR), PSM (5%/10% PSM replaced 5%/10% soybean meal). Growth, digestibility, and rumen fermentation had dose responses whereas slaughter parameters, meat quality, or amino acids indexes were not. Peony byproducts increased DMI (p < 0.001) compared to CON, but higher levels were more advantageous (p = 0.003). However, low levels of peony byproducts decreased the NH3 -N concentration, but increased total volatile fatty acids mole percent more than high levels of that (p < 0.001). All peony byproducts increased dressing percentage (p < 0.05), increased pH and tenderness than CON (p < 0.05). In addition, PSL and PSM improved amino acid profiles of meat compared to CON, and were even better than CONA (p < 0.05). Therefore, peony byproducts not only improved animal growth but also reduced the frequency of antibiotic use in animal feeding.


Asunto(s)
Paeonia , Rumen , Ovinos , Animales , Rumen/metabolismo , Fermentación , Antibacterianos/farmacología , Oveja Doméstica , Carne/análisis , Dieta/veterinaria , Alimentación Animal/análisis , Digestión
2.
Hortic Res ; 10(9): uhad152, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37701456

RESUMEN

The development of tree peony annual shoots is characterized by "withering", which is related to whether there are bud points in the leaf axillaries of annual shoots. However, the mechanism of "withering" in tree peony is still unclear. In this study, Paeonia ostii 'Fengdan' and P. suffruticosa 'Luoyanghong' were used to investigate dynamic changes of annual shoots through anatomy, physiology, transcriptome, and metabolome. The results demonstrated that the developmental dynamics of annual shoots of the two cultivars were comparable. The withering degree of P. suffruticosa 'Luoyanghong' was higher than that of P. ostii 'Fengdan', and their upper internodes of annual flowering shoots had a lower degree of lignin deposition, cellulose, C/N ratio, showing no obvious sclerenchyma, than the bottom ones and the whole internodes of vegetative shoot, which resulted in the "withering" of upper internodes. A total of 36 phytohormone metabolites were detected, of which 33 and 31 were detected in P. ostii 'Fengdan' and P. suffruticosa 'Luoyanghong', respectively. In addition, 302 and 240 differentially expressed genes related to lignin biosynthesis, carbon and nitrogen metabolism, plant hormone signal transduction, and zeatin biosynthesis were screened from the two cultivars. Furtherly, 36 structural genes and 40 transcription factors associated with the development of annual shoots were highly co-expressed, and eight hub genes involved in this developmental process were identified. Consequently, this study explained the developmental dynamic on the varied annual shoots through multi-omics, providing a theoretical foundation for germplasm innovation and the mechanized harvesting of tree peony annual shoots.

3.
Hortic Res ; 10(7): uhad110, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37577399

RESUMEN

Great progress has been made in our understanding of floral organ identity determination and its regulatory network in many species; however, the quantitative genetic basis of floral organ number variation is far less well understood for species-specific traits from the perspective of population variation. Here, using a tree peony (Paeonia suffruticosa Andrews, Paeoniaceae) cultivar population as a model, the phenotypic polymorphism and genetic variation based on genome-wide association studies (GWAS) and expression quantitative trait locus (eQTL) analysis were analyzed. Based on 24 phenotypic traits of 271 representative cultivars, the transcript profiles of 119 cultivars were obtained, which indicated abundant genetic variation in tree peony. In total, 86 GWAS-related cis-eQTLs and 3188 trans-eQTL gene pairs were found to be associated with the numbers of petals, stamens, and carpels. In addition, 19 floral organ number-related hub genes with 121 cis-eQTLs were obtained by weighted gene co-expression network analysis, among which five hub genes belonging to the ABCE genes of the MADS-box family and their spatial-temporal co-expression and regulatory network were constructed. These results not only help our understanding of the genetic basis of floral organ number variation during domestication, but also pave the way to studying the quantitative genetics and evolution of flower organ number and their regulatory network within populations.

4.
BMC Plant Biol ; 22(1): 405, 2022 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-35982415

RESUMEN

BACKGROUND: Flower color patterns play an important role in the evolution and subsequent diversification of flowers by attracting animal pollinators. This interaction can drive the diversity observed in angiosperms today in many plant families such as Liliaceae, Paeoniaceae, and Orchidaceae, and increased their ornamental values. However, the molecular mechanism underlying the differential distribution of anthocyanins within petals remains unclear in Paeonia. RESULTS: In this study, we used an intersectional hybrid between the section Moutan and Paeonia, hereafter named Paeonia 'He Xie', which has purple flowers with dark purple blotches. After Ultra-high performance liquid chromatography-diode array detector (UPLC-DAD) analysis of blotched and non-blotched parts of petals, we found the anthocyanin content in the blotched part was always higher than that in the non-blotched part. Four kinds of anthocyanins, namely cyanidin-3-O-glucoside (Cy3G), cyanidin-3,5-O-glucoside (Cy3G5G), peonidin-3-O-glucoside (Pn3G), and peonidin-3,5-O-glucoside (Pn3G5G) were detected in the blotched parts, while only Cy3G5G and Pn3G5G were detected in the non-blotched parts. This suggests that glucosyltransferases may play a vital role in the four kinds of glucosylated anthocyanins in the blotched parts. Moreover, 2433 differentially expressed genes (DEGs) were obtained from transcriptome analysis of blotched and non-blotched parts, and a key UDP-glycosyltransferase named PhUGT78A22 was identified, which could use Cy3G and Pn3G as substrates to produce Cy3G5G and Pn3G5G, respectively, in vitro. Furthermore, silencing of PhUGT78A22 reduced the content of anthocyanidin 3,5-O-diglucoside in P. 'He Xie'. CONCLUSIONS: A UDP-glycosyltransferase, PhUGT78A22, was identified in P. 'He Xie', and the molecular mechanism underlying differential distribution of anthocyanins within petals was elucidated. This study provides new insights on the biosynthesis of different kinds of anthocyanins within colorful petals, and helps to explain petal blotch formation, which will facilitate the cultivar breeding with respect to increasing ornamental value. Additionally, it provides a reference for understanding the molecular mechanisms responsible for precise regulation of anthocyanin biosynthesis and distribution patterns.


Asunto(s)
Antocianinas , Paeonia , Flores/química , Flores/genética , Glucosa , Glucósidos , Glicosiltransferasas/genética , Paeonia/genética , Fitomejoramiento , Uridina Difosfato/análisis
5.
Front Nutr ; 9: 846684, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35495936

RESUMEN

Piglet enteritis is a major problem that needs to be solved urgently in modern pig production. Paeonol (Pae) has been used as a novel treatment option due to its good medicinal value. This study purported to elucidate the regulatory mechanism of Pae on dextran sodium sulfate (DSS)-induced ulcerative colitis (UC) in weaned piglets. A total of 36 crossbred (Duroc × Landrace × Yorkshire) weaned piglets were stochastically split into six groups: the control group, DSS group, 0.2% Pae group, 0.4% Pae group, 0.8% Pae group, and mesalazine group. The control and DSS groups were fed with a basic diet, the three Pae and mesalazine groups were fed with 0.2, 0.4, 0.8%, and 2 g mesalazine per kilogram of basic diet throughout the study. On the 15th day of the test period, the control group was gavaged with 10 ml of normal saline, while the remaining five groups were gavaged with 10 ml 5% DSS solution for 13 days. The study lasted for 27 days. The results showed that the 0.8% Pae group significantly increased the average daily feed intake (ADFI) and Occludin mRNA expression in the colon of piglets (P < 0.05). The 0.2% Pae group markedly increased the average daily gain (ADG) and zonula occludens-1 (ZO-1) mRNA expression (P < 0.05). In the 0.2% and 0.4% Pae groups, the feed-to-gain ratio (F/G) was significantly reduced and the mRNA expression levels of Caspase-8, respectively, markedly enhanced the mRNA expression levels of transforming growth factor-ß (TGF-ß) and interleukins-4 (IL-4) (P < 0.05). In the 0.8% Pae group, the relative abundance of Campilobacterota was significantly reduced (P < 0.05). In the 0.4% Pae group, the relative abundance of Firmicutes was notably increased (P < 0.05). In the 0.2 and 0.8% Pae groups, the relative abundance of Prevotella was markedly increased (P < 0.05). In the 0.2% Pae group, the contents of propionic acid, butyric acid, and valerate acid were markedly higher (P < 0.05). Thus, it is speculated that Pae may regulate the balance of anti-inflammatory/pro-inflammatory factors, improve intestinal tight junction expression, reduce apoptosis, and improve intestinal microflora structure and growth performance of piglets, thereby restoring intestinal barrier function and alleviating DSS-induced UC in piglets.

6.
Plant Sci ; 317: 111189, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35193738

RESUMEN

Paeonia ostii is an authorized novel vegetable oil crop due to its seeds rich in unsaturated fatty acids (UFAs) especially α-linolenic acid (ALA), which overweight the current available edible oil. However, little is known on the regulation mechanism of UFAs biosynthesis during its seed development. Here, we used transcriptome and proteome data combining phytochemistry means to uncover the relationship between abscisic acid (ABA) signaling and UFAs biosynthesis during P. ostii seed development. Based on transcriptome and proteome analysis, two desaturases of omega-6 and omega-3 fatty acid, named as PoFAD2 and PoFAD3 responsible for ALA biosynthesis were identified. Then, an ABSCISIC ACID-INSENSITIVE 5 (ABI5) proteins was identified as an upstream transcriptional factor, which activated the expression of PoFAD3 instead of PoFAD2. Moreover, silencing of PoABI5 repressed the response of PoFAD3 to ABA. This study provides the first view on the connection between the function of ABA signaling factors and ALA biosynthesis in the P. ostii seed, which lays the foundation for studies on the regulatory mechanism of ABA signaling involved in the UFAs synthesis during seeds development, meanwhile, it will shed light on manipulation of ALA content for satisfying human demands on high quality of edible oil or healthy supplement.


Asunto(s)
Ácidos Grasos Omega-3 , Paeonia , Ácido Abscísico/metabolismo , Ácidos Grasos/metabolismo , Ácidos Grasos Omega-3/análisis , Ácidos Grasos Omega-3/metabolismo , Ácidos Grasos Insaturados/análisis , Paeonia/metabolismo , Semillas/metabolismo
7.
Food Funct ; 12(23): 11777-11789, 2021 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-34739020

RESUMEN

As emerging woody oil crops, the tree peony seeds recently have been attracting great attention for their metabolites and bioactivities. In this research, the phytochemical profiles of the seed coats of tree peonies from different production regions were investigated systematically. Twelve phytochemicals were separated and prepared, mainly belonging to stilbenes. A great variation in stilbene content was detected in the three Paeonia plants, and Paeonia ostii seed coats (POSC) had significantly higher contents of the stilbene compounds than other species. There were nineteen significant correlations between ecogeographical factors and the predominant compounds. A clear discrimination among the species was observed in their HPLC fingerprint and chemometric analysis. Furthermore, POSC extracts could significantly reduce the starch mediated PBG (postprandial blood glucose) levels in normal/diabetic mice. Meanwhile, in vitro enzyme tests revealed that the predominant compounds, suffruticosol B and ampelopsin D, could effectively and competitively inhibit α-glucosidase, indicating that POSC could be a natural source of hypoglycemics in the food and drug fields.


Asunto(s)
Hipoglucemiantes , Paeonia/química , Fitoquímicos , Semillas/química , Animales , Glucemia/efectos de los fármacos , Diabetes Mellitus Experimental/metabolismo , Flavonoides/química , Hipoglucemiantes/análisis , Hipoglucemiantes/química , Hipoglucemiantes/farmacología , Masculino , Ratones , Fitoquímicos/análisis , Fitoquímicos/química , Fitoquímicos/farmacología , Estilbenos/química , Árboles
8.
Technol Cancer Res Treat ; 20: 15330338211039110, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34482767

RESUMEN

Objective: Our study aimed to evaluate the correlation of circular RNA SMARCA5 (circ-SMARCA5) and microRNA 432 (miR-432) with clinical characteristics and survival in bladder cancer patients. Methods: Preoperative clinicopathologic features and survival data of 156 bladder cancer patients were retrospectively reviewed. A total of 156 cases of tumor tissues, whereas 71 cases out of 156 available adjacent tissues were obtained from the Pathology Department for circ-SMARCA5 and miR-432 detections using real-time quantitative polymerase chain reaction. Results: Circ-SMARCA5 was upregulated but miR-432 was downregulated in tumor tissues compared with adjacent tissues; meanwhile, circ-SMARCA5 expression was negatively correlated with miR-432 in bladder cancer tissues. Circ-SMARCA5 high expression was correlated with larger tumor size, higher tumor stage, and lymph node (LYN) metastasis. However, miR-432 high expression was correlated with single multiplicity, smaller tumor size, lower tumor stage, less LYN metastasis in bladder cancer patients. Regarding survival, circ-SMARCA5 high expression was correlated with shorter disease-free survival (DFS) and overall survival (OS); whereas, miR-432 high expression was correlated with longer DFS and OS in bladder cancer patients. Further multivariate Cox's regression analysis displayed that circ-SMARCA5 high expression was an independent predictive factor for both worse DFS and OS in bladder cancer patients. Conclusion: Circ-SMARCA5 high expression but miR-432 low expression is correlated with advanced tumor features and poor survival of bladder cancer patients, which present as potential prognostic markers in bladder cancer.


Asunto(s)
Adenosina Trifosfatasas/genética , Proteínas Cromosómicas no Histona/genética , Regulación Neoplásica de la Expresión Génica , MicroARNs/genética , Interferencia de ARN , ARN Circular , Neoplasias de la Vejiga Urinaria/genética , Adulto , Anciano , Biomarcadores de Tumor , Femenino , Humanos , Masculino , Persona de Mediana Edad , Clasificación del Tumor , Estadificación de Neoplasias , Pronóstico , Modelos de Riesgos Proporcionales , Estudios Retrospectivos , Carga Tumoral , Neoplasias de la Vejiga Urinaria/diagnóstico , Neoplasias de la Vejiga Urinaria/mortalidad
9.
Physiol Plant ; 173(3): 961-977, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34237150

RESUMEN

Paeonia is recognized globally due to its ornamental value. However, the mechanisms behind the formation of distinct levels of lignification in Paeonia stems remain largely unknown. In this study, we selected three representative Paeonia species, namely P. ostii (shrub), P. lactiflora (herb), and P. × 'Hexie' (semi-shrub), to evaluate and contrast their respective anatomical structure, phytochemical composition and transcriptomic profile. Our results showed that the degree of lignin deposition on the cell wall, along with the total amount of lignin and its monomers (especially G-lignin) were higher in P. ostii stems compared to the other two species at almost all development stages except 80 days after flowering. Furthermore, we estimated a total number of unigenes of 60,238 in P. ostii, 43,563 in P. × 'Hexie', and 40,212 in P. lactiflora from stem transcriptome. We then built a co-expression network of 25 transcription factors and 21 enzyme genes involved in lignin biosynthesis and identified nine key candidate genes. The expression patterns of these genes were positively correlated with the transcription levels of PAL, C4H, 4CL2, CCR, and COMT, as well as lignin content. Moreover, the highest relative expression levels of CCR, 4CL2, and C4H were found in P. ostii. This study provides an explanation for the observed differences in lignification between woody and herbaceous Paeonia stems, and constitutes a novel reference for molecular studies of stem-specific lignification process and lignin biosynthesis that can impact the ornamental industry.


Asunto(s)
Paeonia , Pared Celular/genética , Pared Celular/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Lignina/metabolismo , Paeonia/genética , Paeonia/metabolismo , Transcriptoma/genética
10.
Front Nutr ; 8: 679129, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34222303

RESUMEN

Background: Moutan cortex radicis (MCR), as a common traditional Chinese medicine, has been widely used as an antipyretic, antiseptic, and anti-inflammatory agent in China. Objectives: This study aimed to investigate the effects of dietary MCR supplementation on the antioxidant capacity and intestinal health of the pigs and to explore whether MCR exerts positive effects on intestinal health via regulating nuclear factor kappa-B (NF-κB) signaling pathway and intestinal microbiota. Methods: MCR powder was identified by LC-MS analysis. Selected 32 weaned piglets (21 d of age, 6.37 ± 0.10 kg average BW) were assigned (8 pens/diet, 1 pig/pen) to 4 groups and fed with a corn-soybean basal diet supplemented with 0, 2,000, 4,000, and 8,000 mg/kg MCR for 21 d. After the piglets were sacrificed, antioxidant indices, histomorphology examination, and inflammatory signaling pathway expression were assessed. The 16s RNA sequencing was used to analyze the effects of MCR on the intestinal microbiota structure of piglets. Results: Supplemental 4,000 mg/kg MCR significantly increased (P < 0.05) the average daily weight gain (ADG), average daily feed intake (ADFI), total antioxidative capability, colonic short-chain fatty acids (SCFA) concentrations, and the crypt depth in the jejunum but decreased (P < 0.05) the mRNA expression levels of interferon γ, tumor necrosis factor-α, interleukin-1ß, inhibiting kappa-B kinase ß (IKKß), inhibiting nuclear factor kappa-B (IκBα), and NF-κB in the jejunum and ileum. Microbiota sequencing identified that MCR supplementation significantly increased the microbial richness indices (Chao1, ACE, and observed species, P < 0.05) and the relative abundances of Firmicutes and Lactobacillus (P < 0.05), decreased the relative abundances of Bacteroides, Parabacteroides, unidentified_Lachnospiraceae, and Enterococcus (P < 0.05) and had no significant effects on the diversity indices (Shannon and Simpson, P > 0.05). Microbial metabolic phenotypes analysis also showed that the richness of aerobic bacteria and facultative anaerobic bacteria, oxidative stress tolerance, and biofilm forming were significantly increased (P < 0.05), and the richness of anaerobic bacteria and pathogenic potential of gut microbiota were reduced (P < 0.05) by MCR treatment. Regression analysis showed that the optimal MCR supplemental level for growth performance, serum antioxidant capacity, and intestinal health of weaned piglets was 3,420 ~ 4,237 mg/kg. Conclusions: MCR supplementation improved growth performance and serum antioxidant capacity, and alleviated intestinal inflammation by inhibiting the IKKß/IκBα/NF-κB signaling pathway and affecting intestinal microbiota in weaned piglets.

11.
J Ethnopharmacol ; 273: 113985, 2021 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-33667571

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Paeonia plants have been widely used as traditional Chinese medicinal materials for more than 2,000 years in the treatment of cardiovascular, extravasated blood and female genital diseases; paeoniflorin and paeonol have been implicated as the plants' primary active ingredients. AIM OF THE STUDY: Previous studies have been singularly focused on the chemical constituents and content variation of the Paeonia roots in the advancement of traditional Chinese medicine, with the plants' stems and leaves considered useless. This study aims to explore the chemical constituents, content variation, and antioxidant capacity in Paeonia stems and leaves for the future utilization of traditional Chinese medicine, given that current practices of digging and trade endanger Paeonia in the wild. MATERIALS AND METHODS: Herein, secondary metabolites from the stems and leaves from six developmental stages of the annual growth cycle of Paeonia ostii T. Hong & J. X. Zhang, P. 'Hexie', and P. lactiflora Pall. were qualitatively and quantitatively analyzed via high-performance liquid chromatography with a diode array detector (HPLC-DAD) and high-performance liquid chromatography quadrupole time-of-flight mass spectrometry (HPLC-Q-TOF-MS). Antioxidant capacity at each stage was also evaluated by various free radical scavenging assays. RESULTS: A total of 24 metabolites were detected and identified, including 5 monoterpene glycosides, 4 tannins, 5 phenols, 9 flavonoids, and paeonol. Excepting paeonol and the phenols, the levels of each metabolite category were significantly higher in the leaves than the stems during all developmental stages. The paeoniflorin content in the P. ostii leaves was the highest during the first developmental stage and higher than the standards of the Chinese Pharmacopoeia, suggesting it to be the optimal harvesting stage for medicinal uses. Notably, the antioxidant capacity of the leaves was significantly greater than in the stems, particularly for the leaves of P. 'Hexie'. CONCLUSION: Our study indicates that the leaves of P. 'Hexie' have the potential to be a worthy medicinal substitute to Paeonia roots due to their high monoterpene glycosides, phenols, and flavonoids as well as their strong antioxidant capacity. Further, this study provides a theoretical basis for the development and utilization of non-root Paeonia plant sections as medicinal plant resources.


Asunto(s)
Antioxidantes/farmacología , Paeonia/química , Hojas de la Planta/química , Tallos de la Planta/química , Antioxidantes/química , Flavonoides/química , Glicósidos/química , Paeonia/clasificación , Fenoles/química , Fitoquímicos/análisis , Fitoterapia , Plantas Medicinales , Especificidad de la Especie , Taninos/química
12.
Physiol Plant ; 172(1): 64-76, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33247451

RESUMEN

Chalcone synthase (CHS) is the key enzyme in the flavonoid biosynthetic pathway and has been studied in many plants, but the function of the CHS gene has not been well characterized in Paeonia ostii. In this study, we obtained a CHS homolog gene from P. ostii, which possessed the putative conserved amino acids of chalcone synthase by multiple alignment analysis and demonstrated the highest expression in developing seeds. In vitro assays of the recombinant PoCHS protein confirmed enzymatic activity using malonyl-CoA and 4-coumaroyl-CoA as substrates, and the optimal pH and reaction temperature were 7.5 and 40 °C, respectively. Furthermore, ectopic over-expression of PoCHS in Arabidopsis up-regulated the expression levels of genes involved in seed development (ABI), glycolysis (PKp2, PDH-E1a, and SUS2/3), and especially fatty acid biosynthesis (BCCP2, CAC2, CDS2, FatA, and FAD3). This resulted in an increased unsaturated fatty acid content, especially α-linolenic acid, in transgenic Arabidopsis seeds. In this study, we examined the functions of CHS homolog of P. ostii and demonstrated its new function in seed fatty acid biosynthesis.


Asunto(s)
Arabidopsis , Paeonia , Arabidopsis/genética , Vías Biosintéticas/genética , Ácidos Grasos , Paeonia/genética , Semillas/genética
13.
J Agric Food Chem ; 68(33): 8996-9003, 2020 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-32806119

RESUMEN

In this work, a microemulsion emitting fluorescence was fabricated as a potential oral delivery system for bioactive compounds. In simulated oral administration, the microemulsion was characterized for its microstructure by 1hydrogen-nuclear magnetic resonance (1H-NMR). Results showed that microemulsions not only have good resistance to oral and gastric phases, but also lay a solid foundation for the release of bioactive compounds in the intestine. Fluorescence stability tests showed that microemulsions exhibit a remarkable fluorescence intensity in the digestive environment, indicating feasibility as a label-free delivery carrier. Moreover, in vitro release tests of bioactive compounds confirmed that an α-linolenic acid (ALA)-loaded microemulsion mainly released in the intestine, thereby achieving the aim of controlling the release of bioactive compounds. These results suggest that the synthesized fluorescent microemulsion, combining the favorable features of nontoxicity, antidigestive stability, remarkable fluorescence intensity, and controllable release, can be regarded as a promising label-free delivery carrier for oral administration.


Asunto(s)
Sistemas de Liberación de Medicamentos/instrumentación , Emulsiones/química , Ácido alfa-Linolénico/química , Administración Oral , Emulsiones/administración & dosificación , Fluorescencia , Espectroscopía de Resonancia Magnética , Tamaño de la Partícula , Ácido alfa-Linolénico/administración & dosificación
14.
Mediators Inflamm ; 2020: 5938957, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32410858

RESUMEN

BACKGROUND: Previous studies have demonstrated that plasma high-sensitivity C-reactive protein (hsCRP) was the predictor for unstable coronary plaque. Patients with noncalcified plaque (NCP) or mixed plaque (MP) have a higher risk of poor outcomes. However, the association between hsCRP and the presence of NCP or MP (NCP/MP) in old adults remains unclear, and if present, whether there exist differences between young and old adults remain unknown. Thus, the aim of this study was to investigate the role of hsCRP in predicting the presence of NCP/MP and evaluate whether age has any impact on this association. METHODS: A total of 951 subjects were included in this study. Complete clinical and laboratory data were collected. According to the characteristics of the most stenotic plaque, we divided them into 2 groups: calcified plaque (CP) and NCP/MP. Subjects with no plaque were classified as the control group (CR). Subjects with age ≥ 60 years were defined as older adults, and those with age < 60 years were classified as nonelderly people. RESULTS: Patients with NCP/MP had significantly higher hsCRP level compared with subjects with CR or CP in older adults but not in nonelderly people. The proportion of NCP/MP was significantly increased from 27.0% in the hsCRP < 1.25 mg/L group to 42.7% in the hsCRP > 2.70 mg/L group in older adults. Multiple logistic regression analysis showed that hsCRP was an independent risk factor for the presence of NCP/MP (odds ratio (OR) = 1.093, 95% CI 1.032-1.157, P = 0.001) only in older adults. CONCLUSIONS: hsCRP is independently associated with the presence of NCP/MP in older adults but not in nonelderly people. These results suggest the potential significance of hsCRP-lowering regimens in older adults with NCP/MP.


Asunto(s)
Aterosclerosis/sangre , Proteína C-Reactiva/análisis , Enfermedad de la Arteria Coronaria/sangre , Adulto , Factores de Edad , Anciano , Enfermedades Cardiovasculares/metabolismo , Angiografía Coronaria , Femenino , Corazón , Humanos , Procesamiento de Imagen Asistido por Computador , Masculino , Persona de Mediana Edad , Análisis Multivariante , Placa Aterosclerótica/patología , Medición de Riesgo , Sensibilidad y Especificidad , Resultado del Tratamiento
15.
J Exp Bot ; 70(18): 4749-4762, 2019 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-31106836

RESUMEN

Flavonoids are secondary metabolites widely distributed among angiosperms, where they play diverse roles in plant growth, development, and evolution. The regulation of flavonoid biosynthesis in plants has been extensively studied at the transcriptional level, but post-transcriptional, translational, and post-translational control of flavonoid biosynthesis remain poorly understood. In this study, we analysed post-translational regulation of flavonoid biosynthesis in the ornamental plant Paeonia, using proteome and ubiquitylome profiling, in conjunction with transcriptome data. Three enzymes involved in flavonoid biosynthesis were identified as being putative targets of ubiquitin-mediated degradation. Among these, chalcone synthase (PhCHS) was shown to have the greatest number of ubiquitination sites. We examined PhCHS abundance in petals using PhCHS-specific antibody and found that its accumulation decreased at later developmental stages, resulting from 26S proteasome-mediated degradation. We further identified a ring domain-containing protein (PhRING-H2) that physically interacts with PhCHS and demonstrated that PhRING-H2 is required for PhCHS ubiquitination. Taken together, our results suggest that PhRING-H2-mediates PhCHS ubiquitination and degradation is an important mechanism of post-translational regulation of flavonoid biosynthesis in Paeonia, providing a theoretical basis for the manipulation of flavonoid biosynthesis in plants.


Asunto(s)
Aciltransferasas/metabolismo , Paeonia/metabolismo , Proteínas de Plantas/metabolismo , Ubiquitinación , Flores/química , Flores/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
16.
Plant Cell Physiol ; 60(3): 599-611, 2019 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-30496505

RESUMEN

Flower color patterns play critical roles in plant-pollinator interactions and represent one of the most common adaptations during angiosperm evolution. However, the molecular mechanisms underlying flower color pattern formation are less understood in non-model organisms. The aim of this study was to identify genes involved in the formation of petal blotches in tree peony (Paeonia suffruticosa) through transcriptome profiling and functional experiments. We identified an R2R3-MYB gene, PsMYB12, representing a distinct R2R3-MYB subgroup, with a spatiotemporal expression pattern tightly associated with petal blotch development. We further demonstrated that PsMYB12 interacts with a basic helix-loop-helix (bHLH) and a WD40 protein in a regulatory complex that directly activates PsCHS expression, which is also specific to the petal blotches. Together, these findings advance our understanding of the molecular mechanisms of pigment pattern formation beyond model plants. They also benefit molecular breeding of tree peony cultivars with novel color patterns and promote germplasm innovation.


Asunto(s)
Paeonia/metabolismo , Factores de Transcripción/metabolismo , Aciltransferasas/genética , Aciltransferasas/metabolismo , Antocianinas/genética , Antocianinas/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Paeonia/genética , Factores de Transcripción/genética
17.
Foods ; 9(1)2019 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-31905710

RESUMEN

Paeonia ostii is an important woody oil plant cultivated in China on a large scale. Its seed oil is enriched with unsaturated fatty acids and a high content of alpha-linolenic acid (ALA), which are beneficial to human health. The aim of this research is to determine the qualitative traits characteristic of P. ostii seed from various production areas in China. In this study, seed quality traits were evaluated on the basis of proximate composition, content of fatty acids, tocopherol, secondary metabolites, and the antioxidant activity of seed coat (PSC) and kernel (PSK). A high content of total fatty acids (298.89-399.34 mg g-1), crude protein (16.91%-22.73%), and total tocopherols (167.83-276.70 µg g-1) were obtained from PSK. Significant differences were found in the content of palmitic acids (11.31-14.27 mg g-1), stearic acids (2.42-4.24 mg g-1), oleic acids (111.25-157.63 mg g-1), linoleic acids (54.39-83.59 mg g-1), and ALA (99.85-144.71 mg g-1) in the 11 main production areas. Eight and seventeen compounds were detected in PSC and PSK, respectively. A significantly higher content of total phenols was observed in PSC (139.49 mg g-1) compared with PSK (3.04 mg g-1), which was positively related to antioxidant activity. This study indicates that seeds of P. ostii would be a good source of valuable oil and provides a basis for seed quality evaluation for the production of edible oil and potential ALA supplements from the promising woody oil plant.

18.
Phytochemistry ; 146: 16-24, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29207319

RESUMEN

Mu Dan Pi is a traditional Chinese medicine used to treat inflammation, cancer, allergies, diabetes, angiocardiopathy, and neurodegenerative diseases. In this study, the metabolome variation within Mu Dan Pi collected from 372 tree peony cultivars was systematically investigated. In total, 42 metabolites were identified, comprising of 14 monoterpene glucosides, 11 tannins, 8 paeonols, 6 flavonoids, and 3 phenols. All cultivars revealed similar metabolite profiles, however, they were further classified into seven groups on the basis of their varying metabolite contents by hierarchical cluster analysis. Traditional cultivars for Mu Dan Pi were found to have very low metabolite contents, falling into clusters I and II. Cultivars with the highest amounts of metabolites were grouped in clusters VI and VII. Five potential cultivars, namely, 'Bai Yuan Qi Guan', 'Cao Zhou Hong', 'Da Zong Zi', 'Sheng Dan Lu', and 'Cheng Xin', with high contents of monoterpene glycosides, tannins, and paeonols, were further screened. Interestingly, the majority of investigated cultivars had relatively higher metabolite contents compared to the traditional medicinal tree peony cultivars.


Asunto(s)
Medicamentos Herbarios Chinos/aislamiento & purificación , Paeonia/química , Fitoquímicos/aislamiento & purificación , Medicamentos Herbarios Chinos/química , Medicina Tradicional China , Estructura Molecular , Fitoquímicos/química , Raíces de Plantas/química
19.
Plant Cell Rep ; 36(1): 151-162, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27787596

RESUMEN

KEY MESSAGE: Our study is the first to demonstrate that PSK1 , a SKP1 -like gene homologue, is involved in salinity tolerance. Our functional characterization of PSK1 provides new insights into tree peony development. A homologous gene of S-phase kinase-associated protein1 (SKP1) was cloned from tree peony (Paeonia suffruticosa) and denoted as PSK1. The 462-bp open reading frame of PSK1 was predicted to encode a protein comprising 153 amino acids, with a molecular mass of 17 kDa. The full-length gene was 1,634 bp long and included a large 904-bp intron. PSK1 transcription was detected in all tissues, with the highest level observed in sepals, followed by leaves. Under salinity stress, overexpression of PSK1 in Arabidopsis resulted in increased germination percentages, cotyledon greening, and fresh weights relative to wild-type plants. Furthermore, transgenic Arabidopsis lines containing 35S::PSK1 displayed increased expression of genes that would be essential for reproduction and growth under salinity stress: ASK1, LEAFY, FT, and CO involved in flower development and flowering time as well as P5CS, RAB18, DREB, and SOD1-3 contributing to salinity tolerance. Our functional characterization of PSK1 adds to global knowledge of the multiple functions of previously explored SKP1-like genes in plants and sheds light on the molecular mechanism underlying its role in salinity tolerance. Our findings also provide information on the function and molecular mechanism of PSK1 in tree peony flower development, thereby revealing a theoretical basis for regulation of flowering and conferral of salinity tolerance in tree peony.


Asunto(s)
Arabidopsis/genética , Arabidopsis/fisiología , Genes de Plantas , Paeonia/genética , Proteínas de Plantas/metabolismo , Salinidad , Tolerancia a la Sal/genética , Homología de Secuencia de Aminoácido , Secuencia de Aminoácidos , Carbohidratos/análisis , Flores/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Filogenia , Proteínas de Plantas/química , Plantas Modificadas Genéticamente , Prolina/metabolismo , Alineación de Secuencia , Análisis de Secuencia de Proteína
20.
J Exp Bot ; 66(21): 6563-77, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26208646

RESUMEN

Anthocyanins are major pigments in plants. Methylation plays a role in the diversity and stability of anthocyanins. However, the contribution of anthocyanin methylation to flower coloration is still unclear. We identified two homologous anthocyanin O-methyltransferase (AOMT) genes from purple-flowered (PsAOMT) and red-flowered (PtAOMT) Paeonia plants, and we performed functional analyses of the two genes in vitro and in vivo. The critical amino acids for AOMT catalytic activity were studied by site-directed mutagenesis. We showed that the recombinant proteins, PsAOMT and PtAOMT, had identical substrate preferences towards anthocyanins. The methylation activity of PsAOMT was 60 times higher than that of PtAOMT in vitro. Interestingly, this vast difference in catalytic activity appeared to result from a single amino acid residue substitution at position 87 (arginine to leucine). There were significant differences between the 35S::PsAOMT transgenic tobacco and control flowers in relation to their chromatic parameters, which further confirmed the function of PsAOMT in vivo. The expression levels of the two homologous AOMT genes were consistent with anthocyanin accumulation in petals. We conclude that AOMTs are responsible for the methylation of cyanidin glycosides in Paeonia plants and play an important role in purple coloration in Paeonia spp.


Asunto(s)
Metiltransferasas/genética , Paeonia/genética , Proteínas de Plantas/genética , Secuencia de Aminoácidos , Antocianinas/genética , Antocianinas/metabolismo , Color , Flores/genética , Flores/metabolismo , Metilación , Metiltransferasas/química , Metiltransferasas/metabolismo , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Paeonia/metabolismo , Filogenia , Pigmentación , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Alineación de Secuencia , Nicotiana/genética , Nicotiana/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA