Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Heliyon ; 10(12): e32710, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38975103

RESUMEN

The study of solid/liquid interface is of great significance for understanding various phenomena such as the nanostructure of the interface, liquid wetting, crystal growth and nucleation. In this work, the nanostructure of the pyridinium ionic liquid [BPy]BF4 on different gold surfaces was studied by molecular dynamics simulation. The results indicate that the density of the ionic liquids near the gold surface is significantly higher than that in the bulk phase. Cation's tail (the alkyl chain) orients parallel to the surface under all studied conditions. Cation's head (the pyridine ring) orientation varies from parallel to perpendicular, which depends on the temperature and corrugation of the Au(hkl) surface. Interestingly, analysis of simulated mass and number densities revealed that surface corrugation randomizes the cations packing. On smooth Au(111) and Au(100) surfaces, parallel and perpendicular orientations are well distinguished for densely packed cations. While on corrugated Au(110), cations' packing density and order are decreased. Overall, this study explores the adsorption effect of the gold surface on ionic liquids, providing some valuable insights into their behavior on the solid/liquid interface.

2.
Polymers (Basel) ; 16(13)2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-39000700

RESUMEN

Umbilical cord mesenchymal stem cells (UC-MSCs) possess the capabilities of differentiation and immune modulation, which endow them with therapeutic potential in the treatment of type 2 diabetes mellitus (T2DM). In this study, to investigate the repair mechanism of UC-MSCs in hydrogel on pancreatic ß-cells in diabetes, mouse insulinoma 6 (MIN-6) cells damaged by streptozotocin (STZ) in vitro were used in co-culture with UC-MSCs in hydrogel (UC-MSCs + hydrogel). It was found that UC-MSCs + hydrogel had a significant repair effect on injured MIN-6 cells, which was better than the use of UC-MSCs alone (without hydrogel). After repair, the expression of superoxide dismutase (SOD) and catalase (CAT) as well as the total antioxidant capacity (T-AOC) of the repaired MIN-6 cells were increased, effectively reducing the oxidative stress caused by STZ. In addition, UC-MSCs + hydrogel were able to curb the inflammatory response by promoting the expression of anti-inflammatory factor IL-10 and reducing inflammatory factor IL-1ß. In addition, the expression of both nuclear antigen Ki67 for cell proliferation and insulin-related genes such as Pdx1 and MafA was increased in the repaired MIN-6 cells by UC-MSCs + hydrogel, suggesting that the repair effect promotes the proliferation of the injured MIN-6 cells. Compared with the use of UC-MSCs alone, UC-MSCs + hydrogel exhibit superior antioxidant stress resistance against injured MIN-6 cells, better proliferation effects and a longer survival time of UC-MSCs because the porous structure and hydrophilic properties of the hydrogel could affect the growth of cells and slow down their metabolic activities, resulting in a better repair effect on the injured MIN-6 cells.

3.
Inorg Chem ; 63(31): 14345-14353, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39033409

RESUMEN

A biocompatible metal-organic framework (MOF), named HSTC-4, constructed using the flexible 4,4'-oxybis(benzoic acid) (OBA), was developed to enable efficient loading and controlled release of vitamin C (VC) through a combination of strategies involving ligand length, structure design, and metal selection. The kinetic product HSTC-4 demonstrates a propensity for transforming into the thermodynamically stable HSTC-5 under external stimuli, such as photoillumination and vacuum heating, as witnessed by single-crystal to single-crystal transformation. Density functional theory (DFT) calculations reveal that the VC guest molecules exhibit stronger binding affinity with HSTC-5 due to its narrower pores compared to HSTC-4, resulting in a slower release of VC from VC@HSTC-5. Furthermore, precise control over VC release can be achieved by introducing surface modifications involving SiO2 onto the structure of VC@HSCT-5, while simultaneously adjusting environmental factors such as pH and temperature conditions. Preliminary cell culture experiments and cytotoxicity assays highlight the biocompatibility of HSTC-5, suggesting that it is a promising platform for sustained drug delivery and diverse biomedical applications.


Asunto(s)
Ácido Ascórbico , Estructuras Metalorgánicas , Termodinámica , Estructuras Metalorgánicas/química , Estructuras Metalorgánicas/farmacología , Ácido Ascórbico/química , Cinética , Humanos , Teoría Funcional de la Densidad , Supervivencia Celular/efectos de los fármacos , Portadores de Fármacos/química , Estructura Molecular , Liberación de Fármacos
6.
J Biomol Struct Dyn ; : 1-10, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38263694

RESUMEN

Carbon nanotubes (CNTs) have potential prospects in disease treatment, so it is of great significance to study CNTs as the possible inhibitors of RNA-dependent RNA polymerase (RdRp). Through the way of using the RdRp of SARS-COV-2 as a model, five armchair single-walled carbon nanotubes (SWCNTs) (namely Dn, which stands for CNTs (n, m = n), n = 3-7) and RdRp have been selected to study the interactions by means of molecular docking and molecular dynamics simulation. After five SWCNT-RdRp complex systems have been subjected to the molecular dynamics simulations of 100 ns, and Molecular Mechanics Poisson - Boltzmann Surface Area (MMPBSA) has been used to calculate the binding free energy, it is found that the binding free energy of the D6 system (-189.541 kJ/mol) is significantly higher than that of the other four systems, and most of the amino acids with strong positive effects on binding are usually basic amino acids. What's more, in the further investigation of the specific interaction mechanism between CNT (6,6) and RdRp, it is revealed that the three amino acid residues LYS545, ARG553 and ARG555 located in the nucleoside triphosphate (NTP) entry channel all have strong effects. In addition, it is also observed that when ARG555 has been inserted into SWCNT, a stable structure will be formed, which will break the original NTP entry channel structure and inhibit virus replication. Therefore, it can be concluded that certain specific types of SWCNT, such as CNT (6,6), could be potential small molecule inhibitors in the treatment of coronavirus.Communicated by Ramaswamy H. Sarma.

7.
Cancer Manag Res ; 15: 645-650, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37465082

RESUMEN

Background: Lung cancer remains the leading cause of cancer-related mortality. Studies have revealed that a combination of crizotinib and EGFR tyrosine kinase inhibitors (TKIs) could be an effective treatment option for patients with sensitizing EGFR mutations and de novo or acquired MET amplification. Until now, there have been few reports of the response in patients harboring three mutations. Case Presentation: A patient was diagnosed with advanced lung adenocarcinoma harboring EGFR Del19, L858R mutation and METex14. She received osimertinib, and repeated imaging revealed further tumor progression. Sixty-six days later, combined treatment with osimertinib and crizotinib was initiated. Unfortunately, the patient succumbed to death at home after 17 days. Conclusion: This report firstly provided a lung adenocarcinoma patient with two common EGFR mutations (Del19 and L858R) and METex14. Our case raises a reminder about the tolerance and safety of combination therapy, especially in older peoples.

8.
Ann Med ; 55(1): 2196088, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37014291

RESUMEN

BACKGROUND: Thyroid hormones are key regulators of several physiological processes, including differentiation, embryonic development, proliferation, and metabolism. Several prospective studies have shown a relationship between hyperthyroidism and cancer incidence; however, since the association between thyroid hormone levels and lung cancer remains controversial, this study aimed to determine the correlation between the same. METHODS: We retrospectively analyzed 289 patients, who were diagnosed with lung cancer at the Huzhou Central Hospital between January 2016 and January 2021, and 238 healthy subjects. The baseline clinical data of two groups were collected. The concentrations of thyroid hormones, tumor CEA, CYF, SCC, and NSE in both the lung cancer patient and healthy volunteer groups were analyzed. Student's t-test or Mann-Whitney test was used to compare continuous variables. A chi-square test was adopted to estimate the relationship between serum thyroid hormones level and clinical characteristics of lung cancer cases. ROC curve analyses were used to determine the characteristics of thyroid hormones for recognizing lung cancer. RESULTS: The results showed that serum thyroid stimulating hormone (TSH), total thyroxine, total triiodothyronine, and free triiodothyronine (FT3) levels were significantly decreased, while free thyroxine (FT4) levels were increased in patients with lung cancer. In addition, FT3 was identified as a potential diagnostic biomarker of stage I-IV lung cancer with the area under the curve values of 0.807. What's more, FT3 and FT4 were used in combination with CEA and were identified as potential diagnostic biomarkers of stage 0 lung cancer (Tis) with the area under the curve values of 0.774. CONCLUSIONS: Our study highlights the possibility of using thyroid hormones as innovative diagnostic markers for lung cancer.


Serum TSH, TT4, TT3, and FT3 levels were significantly decreased in patients with lung cancer.low TT3 concentration was positively associated with age (p < 0.05), sex (p < 0.05), tumor size (p < 0.05) and lymph node metastasis (p < 0.05). Moreover, the concentration of FT3 was dependent on age (p < 0.05) and tumor size (p < 0.05). The serum FT4 concentration was discernible with obviously higher concentration in stage IV patients compared with stage I­III patients (p < 0.05).When FT3 was used in combination with CEA and CYF, the sensitivity and specificity in the screening for stage I­IV lung cancer were markedly increased to 85.9% and 97.5%, respectively. When we included FT3, FT4, and CEA in the diagnosis, the AUC was 0.774. The sensitivity and specificity of screening for stage 0 lung cancer were increased to 70.2% and 75.2%, respectively.


Asunto(s)
Neoplasias Pulmonares , Triyodotironina , Embarazo , Femenino , Humanos , Tiroxina , Estudios Retrospectivos , Estudios Prospectivos , Hormonas Tiroideas , Biomarcadores , Tirotropina , Neoplasias Pulmonares/diagnóstico
9.
Front Genet ; 14: 1132361, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36911395

RESUMEN

Septic shock as a subset of sepsis, has a much higher mortality, while the mechanism is still elusive. This study was aimed at identifying core mechanisms associated with septic shock and its high mortality by investigating transcriptome data. We screened 72 septic-shock-associated genes (SSAGs) with differential expression between septic shock and sepsis in the discovery dataset. Further gene set enrichment analysis identified upregulated neutrophil activation and impaired T-cell activation in septic shock. Co-expression analysis revealed nine co-expressed gene modules. In addition, we determined twenty-one prognostic SSAGs using cox regression analysis in an independent dataset. Moreover, protein-protein interaction (PPI) network revealed two clusters. Among these neutrophil activation was enriched in the most positively-related modules and the cluster2 PPI network, while T-cell activation was enriched in both the most negatively-related module and one of the most positively-related modules as well as the cluster1 PPI network. ELANE, LCN2 and IFI44 were identified as hub genes with CytoHubba methods and semantic similarity analysis. Notably, ELANE was the only prognostic gene and was further validated in an external dataset. Blood neutrophil count was demonstrated to increase in septic shock and be a risky factor of prognosis based on clinical data. In conclusions, septic shock is associated with upregulated neutrophil activation and dysregulated T-cell activation. Three hub genes might have potentials as sensitive markers for the further translational research and ELANE could be a robust prognostic biomarker and effective therapeutic target.

10.
Front Med (Lausanne) ; 9: 906364, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35872785

RESUMEN

Epidermal growth factor receptor (EGFR)-activating mutations are major oncogenic mechanisms in non-small cell lung cancer (NSCLC). Most patients with NSCLC with EGFR mutations benefit from targeted therapy with EGFR- tyrosine kinase inhibitors (TKIs). One of the main limitations of targeted therapy is that the tumor response is not durable, with the inevitable development of drug resistance. Previous studies demonstrated that the potential resistance mechanisms are diverse, including the presence of EGFR T790M, MET amplification, mesenchymal transformation, and anaplastic lymphoma kinase (ALK) rearrangement. The patient in our report was diagnosed with stage IA lung adenocarcinoma harboring the EGFR L858R mutation and underwent radical surgery. The patient received icotinib for 12 months after recurrence. Subsequent molecular analysis of the left pleural effusion indicated that LCLAT1-ALK fusion might be an underlying mechanism contributing to the acquired resistance to icotinib. Ensartinib was prescribed, but the lesion in the right lung continued to progress. Hence, a re-biopsy and molecular analysis of lesions in the right lung was performed to solve this problem. In contrast to the left pleural effusion, EGFR exon 20 T790M might have mediated the acquired resistance in lesions in the right lung of this patient. The combination of osimertinib and ensartinib has achieved a rapid partial response until now. The complexity and heterogeneity in our case may provide new insights into the resistance mechanisms of targeted therapy.

11.
Front Cell Infect Microbiol ; 12: 1001607, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36699719

RESUMEN

Objectives: To develop a rapid and low-cost method for 16S rDNA nanopore sequencing. Methods: This was a prospective study on a 16S rDNA nanopore sequencing method. We developed this nanopore barcoding 16S sequencing method by adding barcodes to the 16S primer to reduce the reagent cost and simplify the experimental procedure. Twenty-one common pulmonary bacteria (7 reference strains, 14 clinical isolates) and 94 samples of bronchoalveolar lavage fluid from children with severe pneumonia were tested. Results indicating low-abundance pathogenic bacteria were verified with the polymerase chain reaction (PCR). Further, the results were compared with those of culture or PCR. Results: The turnaround time was shortened to 6~8 hours and the reagent cost of DNA preparation was reduced by employing a single reaction adding barcodes to the 16S primer in advance. The accuracy rate for the 21 common pulmonary pathogens with an abundance ≥ 99% was 100%. Applying the culture or PCR results as the gold standard, 71 (75.5%) of the 94 patients were positive, including 25 positive cultures (26.6%) and 52 positive quantitative PCRs (55.3%). The median abundance in the positive culture and qPCR samples were 29.9% and 6.7%, respectively. With an abundance threshold increase of 1%, 5%, 10%, 15% and 20%, the test sensitivity decreased gradually to 98.6%, 84.9%, 72.6%, 67.1% and 64.4%, respectively, and the test specificity increased gradually to 33.3%, 71.4%, 81.0%, 90.5% and 100.0%, respectively. Conclusions: The nanopore barcoding 16S sequencing method can rapidly identify the pathogens causing bacterial pneumonia in children.


Asunto(s)
Secuenciación de Nanoporos , Neumonía Bacteriana , Humanos , Niño , ADN Ribosómico/genética , Estudios Prospectivos , ADN Bacteriano/genética , ADN Bacteriano/análisis , Bacterias , Neumonía Bacteriana/diagnóstico , ARN Ribosómico 16S/genética
12.
Molecules ; 26(22)2021 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-34834131

RESUMEN

A novel soluble copolymer poly(S-MVT) was synthesized using a relatively quick one-pot solvent-free method, inverse vulcanization. Both of the two raw materials are sustainable, i.e., elemental sulfur is a by-product of the petroleum industry and 4-Methyl-5-vinylthiazole (MVT) is a natural monoene compound. The microstructure of poly(S-MVT) was characterized by FT-IR, 1H NMR, XPS spectroscopy, XRD, DSC SEM, and TEM. Test results indicated that the copolymers possess protonated thiazole nitrogen atoms, meso/macroporous structure, and solubility in tetrahydrofuran and chloroform. Moreover, the improved electronic properties of poly(S-MVT) relative to elemental sulfur have also been investigated by density functional theory (DFT) calculations. The copolymers are utilized successfully as the cathode active material in Li-S batteries. Upon employment, the copolymer with 15% MVT content provided good cycling stability at a capacity of ∼514 mA h g-1 (based on the mass of copolymer) and high Coulombic efficiencies (∼100%) over 100 cycles, as well as great rate performance.

13.
Front Oncol ; 11: 637733, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34178627

RESUMEN

PURPOSE: The molecular mechanism underlying the carcinogenesis and development of lung squamous cell carcinoma (LUSC) has not been sufficiently elucidated. This analysis was performed to find pivotal genes and explore their prognostic roles in LUSC. METHODS: A microarray dataset from GEO (GSE19188) and a TCGA-LUSC dataset were used to identify differentially co-expressed genes through Weighted Gene Co-expression Network Analysis (WGCNA) and differential gene expression analysis. We conducted functional enrichment analyses of differentially co-expressed genes and established a protein-protein interaction (PPI) network. Then, we identified the top 10 hub genes using the Maximal Clique Centrality (MCC) algorithm. We performed overall survival (OS) analysis of these hub genes among LUSC cases. GSEA analyses of survival-related hub genes were conducted. Ultimately, the GEO and The Human Protein Atlas (THPA) databases and immunohistochemistry (IHC) results from the real world were used to verify our findings. RESULTS: A list of 576 differentially co-expressed genes were selected. Functional enrichment analysis indicated that regulation of vasculature development, cell-cell junctions, actin binding and PPAR signaling pathways were mainly enriched. The top 10 hub genes were selected according to the ranking of MCC scores, and 5 genes were closely correlated with OS of LUSC. Additionally, GSEA analysis showed that spliceosome and cell adhesion molecules were associated with the expression of GNG11 and ADCY4, respectively. The GSE30219 and THPA databases and IHC results from the real world indicated that although GNG11 was not detected, ADCY4 was obviously downregulated in LUSC tissues at the mRNA and protein levels. CONCLUSIONS: This analysis showed that survival-related hub genes are highly correlated to the tumorigenesis and development of LUSC. Additionally, ADCY4 is a candidate therapeutic and prognostic biomarker of LUSC.

14.
Mar Drugs ; 18(11)2020 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-33126624

RESUMEN

In this study, Spirulina platensis (S.p.) polysaccharide (PSP) was obtained by ultrasonic-microwave-assisted extraction (UMAE) and purified by an aqueous two-phase system (ATPS). Two different methods were applied to purified Spirulina platensis (S.p.) polysaccharide (PSP), respectively, due to PSP as a complex multi-component system. Three polysaccharide fractions (PSP-1, PSP-2, and PSP-3) with different acidic groups were obtained after PSP was fractionated by the diethyl aminoethyl (DEAE)-52 cellulose chromatography, and two polysaccharide fractions (PSP-L and PSP-H) with different molecular weight were obtained by ultrafiltration centrifugation. The chemoprotective effects of PSP in cyclophosphamide (Cy) treated mice were investigated. The results showed that PSP could significantly increase spleen and thymus index, peripheral white blood cells (PWBC), and peripheral blood lymphocytes (PBL). The in vivo immunostimulatory assays demonstrated that PSP could in dose-dependent increase of TNF-α, IL-10, and IFN-γ production in sera. The in vitro immunostimulatory assays showed that PSP and its fractions (PSPs) could evidently enhance the proliferation of splenocytes and RAW 264.7 cells and increase the productions of nitric oxide (NO), tumor necrosis factor-α (TNF-α), and interleukin 6 (IL-6). PSPs could also enhance phagocytic activity of RAW 264.7 cells. The acidic polysaccharide fractions of PSP-2, PSP-3, and PSP-L with small molecular weight had the higher immunostimulatory activity. Signaling pathway research results indicated that PSP-L activated RAW264.7 cells through MAPKs, NF-κB signaling pathways via TLR4 receptor.


Asunto(s)
Adyuvantes Inmunológicos/farmacología , Activación de Macrófagos/efectos de los fármacos , Macrófagos/efectos de los fármacos , Polisacáridos Bacterianos/farmacología , Spirulina/metabolismo , Adyuvantes Inmunológicos/aislamiento & purificación , Animales , Citocinas/metabolismo , Huésped Inmunocomprometido , Macrófagos/inmunología , Macrófagos/metabolismo , Masculino , Ratones , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Estructura Molecular , FN-kappa B/metabolismo , Polisacáridos Bacterianos/aislamiento & purificación , Células RAW 264.7 , Transducción de Señal , Bazo/efectos de los fármacos , Bazo/inmunología , Bazo/metabolismo , Timo/efectos de los fármacos , Timo/inmunología , Timo/metabolismo , Receptor Toll-Like 4/metabolismo
15.
Mar Drugs ; 18(8)2020 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-32824522

RESUMEN

To address the structure-activity relationship of Chlamys farreri polysaccharides on their immunostimulatory efficacy, two polysaccharides (CFP-1 and CFP-2) were extracted from Chlamys farreri by hot water extraction, and separated through column chromatography. The isolated CFPs were chemically analyzed to clarify their physicochemical characteristics and cultured with murine macrophage RAW264.7 cells, in order to evaluate their immunostimulatory efficacy. Despite the fact that both CFP-1 and CFP-2 were mainly comprised of glucose lacking the triple-helix structure, as revealed through preliminary physicochemical analyses, obvious differences in regard to molecular weight (Mw), glucuronic acid content (GAc) and branching degree (BD) were observed between CFP-1 and CFP-2. In in vitro immunostimulatory assays for macrophage RAW264.7 cells, it was demonstrated that CFP-2 with larger Mw, more GAc and BD could evidently promote phagocytosis and increase the production of NO, IL-6, TNF-α and IL-1ß secretion, by activating the expression of iNOS, IL-6, TNF-α and IL-1ß genes, respectively. Hence, CFP-2 shows great promise as a potential immunostimulatory agent in the functional foods and nutraceutical industry, while CFP-1, with lower molecular weight, less GAc and BD, displays its weaker immunostimulatory efficacy, based on the indistinctive immunostimulatory parameters of CFP-1.


Asunto(s)
Adyuvantes Inmunológicos/farmacología , Macrófagos/efectos de los fármacos , Pectinidae/química , Polisacáridos/farmacología , Adyuvantes Inmunológicos/química , Adyuvantes Inmunológicos/aislamiento & purificación , Animales , Citocinas/metabolismo , Mediadores de Inflamación/metabolismo , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones , Estructura Molecular , Fagocitosis/efectos de los fármacos , Polisacáridos/química , Polisacáridos/aislamiento & purificación , Células RAW 264.7 , Relación Estructura-Actividad
16.
Rev Sci Instrum ; 90(11): 114102, 2019 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-31779414

RESUMEN

This paper presents the development of a novel cross-axis countercurrent chromatographic instrument (CCCI) with six separation columns, including design, dynamics, optimization, prototype construction, and experimental validation. The conceptual design and the structural design of the cross-axis CCCI are performed while considering the requirements for the separation operation and design. The dynamic analysis is carried out in order to guarantee the local balance and the global balance for the CCCI. The relationship between the mechanical structure parameters and partition efficiency is investigated by analyzing the effect of mechanical structure parameters on the centrifugal force field. By virtue of the modal analysis of the mechanical structure, the critical speed and the weak link of the CCCI are achieved. Aiming at the problem of the weak link, the structural optimization is done. The presented CCCI has six separation columns distributed around the central revolution axis, and it has more separation columns than that of the existing chromatographic instrument. The CCCI has an axial symmetry structure in the three-dimensional space. Thus it can have better dynamics stability than the CCCI having less separation columns with a symmetry structure in the plane. A physical prototype is built, and then the partition efficiency and its effect factors are tested by the single experimental variable method. The results show that the CCCI runs smoothly and has a good retention rate of stationary phase. It is also proved that the developed CCCI has a good partition efficiency on bovine serum albumin and lysozyme.

17.
EBioMedicine ; 37: 177-187, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30314898

RESUMEN

BACKGROUND: NSCLC (non-small-cell lung cancer) is the leading cause of cancer-related mortality worldwide. Both epigenetic and genetic changes contribute to the initiation, development and metastasis of NSCLC. Recently, accumulating data have begun to support the notion that long noncoding RNAs (lncRNAs) function as new crucial regulators of diverse biological processes, including proliferation, apoptosis and metastasis, and play crucial roles in tumorigenesis. Nevertheless, further study is warranted to comprehensively determine lncRNAs' functions and potential mechanism. METHODS: In this study, we performed a comprehensive analysis of the lncRNA expression profile of NSCLC using data from TCGA and Gene Expression Omnibus (GEO). PCAT6 expression level in a cohort of 60 pairs of NSCLC tissues using quantitative real-time PCR (qRT-PCR). Additionally, Loss-of-function assays and gain-of-function assays were used to assess the role of PCAT6 in promoting NSCLC progression. Tumor formation assay in a nude mouse model was performed to verity the role of PCAT6 in NSCLC in vivo. Meanwhile, RIP, ChIP, resue experiment and western blot assays were used to highlights the potential molecular mechanism of PCAT6 in NSCLC. FINDINGS: We identified that an oncogene, PCAT6, was upregulated in NSCLC, and this upregulation was verified in a cohort of 60 pairs of NSCLC tissues. Additionally, the expression level of PCAT6 was correlated with tumor size (P = .036), lymph node metastasis (P = .029) and TNM stage (P = .038). Loss-of-function and gain-of-function assays were used to assess the role of PCAT6 in promoting NSCLC progression. The results revealed that PCAT6 knockdown mitigated NSCLC cell growth by inducing G1-phase cell cycle arrest and apoptosis in vitro and in vivo. Whereas, PCAT6 overexpression could promoted tumor cell growth. Meanwhile, PCAT6 additionally promoted NSCLC cell migration and invasion. Furthermore, mechanistic investigation demonstrated that the oncogenic activity of PCAT6 is partially attributable to its repression of LATS2 via association with the epigenetic repressor EZH2 (Enhancer of zeste homolog 2). Overall, our study highlights the essential role of PCAT6 in NSCLC, suggesting that PCAT6 might be a potent therapeutic target for patients with NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Neoplasias Pulmonares/metabolismo , Oncogenes , Proteínas Serina-Treonina Quinasas/metabolismo , ARN Largo no Codificante/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Proteína Potenciadora del Homólogo Zeste 2/genética , Femenino , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Masculino , Proteínas Serina-Treonina Quinasas/genética , ARN Largo no Codificante/genética , ARN Neoplásico/genética , Proteínas Supresoras de Tumor/genética
18.
Sci Total Environ ; 537: 343-51, 2015 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-26282768

RESUMEN

As an important approach to the realization of agricultural sustainable development, multifunctionality has become a hot spot in the field of urban agriculture. Taking 13 agricultural counties of Beijing City as the assessing units, this study selects 10 assessing index from ecological, economic and social aspects, determines the index weight using Analytic Hierarchy Process (AHP) method, and establishes an index system for the integrated agricultural function. Based on standardized data from agricultural census and remote sensing, the integrated function and multifunctionality of urban agriculture in Beijing City are assessed through the index grade mapping. The results show that agricultural counties with the highest score in ecological, economic, and social function are Yanqing, Changping, and Miyun, respectively; and the greatest disparity among those counties is economic function, followed by social and ecological function. Topography and human disturbance may be the factors that affect integrated agricultural function. The integrated agricultural function of Beijing rises at the beginning then drops later with the increase of mean slope, average altitude, and distance from the city. The whole city behaves balance among ecological, economic, and social functions at the macro level, with 8 out of the 13 counties belonging to ecology-society-economy balanced areas, while no county is dominant in only one of the three functions. On the micro scale, however, different counties have their own functional inclination: Miyun, Yanqing, Mentougou, and Fengtai are ecology-society dominant, and Tongzhou is ecology-economy dominant. The agricultural multifunctionality in Beijing City declines from the north to the south, with Pinggu having the most significant agricultural multifunctionality. The results match up well with the objective condition of Beijing's urban agriculture planning, which has proved the methodological rationality of the assessment to a certain extent.


Asunto(s)
Agricultura , Monitoreo del Ambiente/métodos , Beijing , Conservación de los Recursos Naturales
19.
Biochemistry ; 50(39): 8342-51, 2011 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-21879722

RESUMEN

Mitochondrial-nuclear communication is critical for maintaining mitochondrial activity under stress conditions. Adaptation of the mitochondrial-nuclear network to changes in the intracellular oxidation and reduction milieu is critical for the survival of retinal and retinal pigment epithelial (RPE) cells, in relation to their high oxygen demand and rapid metabolism. However, the generation and transmission of the mitochondrial signal to the nucleus remain elusive. Previously, our in vivo study revealed that prohibitin is upregulated in the retina, but downregulated in RPE cells in the aging and diabetic model. In this study, the functional role of prohibitin in the retina and RPE cells was examined using biochemical methods, including a lipid binding assay, two-dimensional gel electrophoresis, immunocytochemistry, Western blotting, and a knockdown approach. Protein depletion by siRNA characterized prohibitin as an anti-apoptotic molecule in mitochondria, while the lipid binding assay demonstrated subcellular communication between mitochondria and the nucleus under oxidative stress. The changes in the expression and localization of mitochondrial prohibitin triggered by reactive oxygen species are crucial for mitochondrial integrity. We propose that prohibitin shuttles between mitochondria and the nucleus as an anti-apoptotic molecule and a transcriptional regulator in a stress environment in the retina and RPE cells.


Asunto(s)
Núcleo Celular/metabolismo , Mitocondrias/metabolismo , Estrés Oxidativo/fisiología , Epitelio Pigmentado Ocular/metabolismo , Proteínas Represoras/fisiología , Animales , Proteínas Reguladoras de la Apoptosis/fisiología , Cardiolipinas/metabolismo , Bovinos , Línea Celular , Humanos , Peróxido de Hidrógeno/farmacología , Mitocondrias/fisiología , Prohibitinas , Retina/metabolismo , Proteína p53 Supresora de Tumor/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA