Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Bioresour Technol ; 406: 130966, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38876287

RESUMEN

This study constructed an integrated algae/partial nitrification/anammox biofilm system and operated it for 240 days. The total nitrogen removal efficiency exceeded 90 %. The structure, compositions, and function of this symbiotic biofilm, which played a pivotal role in the system, were analyzed in detail. Microscope photos and fluorescence in situ hybridization both showed that bacteria and algae were well integrated. The dissolved oxygen gradient further confirmed that different functional microorganisms grew at varying depths within biofilm. Algae formed an oxygen-producing zone (0-0.48 mm), followed by ammonia oxidizing bacteria (AOB) consuming oxygen to form an oxygen-consuming zone (0.48-0.86 mm), and anaerobic ammonia oxidizing bacteria (AnAOB) removed nitrogen in anaerobic zone (>0.86 mm). Chlorella, Nitrosomonas and Candidatus_Kuenenia were identified as the dominant algae, AOB and AnAOB, with relative abundances of 11.80 %, 19.77 % and 3.07 %, respectively. This layered biofilm benefitted providing a suitable environment for various microorganisms to survive within a complex biofilm.

2.
J Hazard Mater ; 465: 133269, 2024 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-38134696

RESUMEN

The contamination of drinking water by microbes is a critical health concern, underscoring the need for safe, reliable, and efficient methods to treat pathogenic microorganisms. While most sterilization materials are available in powder form, this presents safety risks and challenges in recycling. Herein, this study reports the preparation of an innovative copper oxide supported silver monolithic nanoarray mesh with abundant oxygen vacancies (Ag/CuO-VO) by laser ablation. The instantaneous high temperature caused by laser ablation preserves the material's original structure while generating oxygen vacancies on the CuO surface. The Ag/CuO-VO mesh demonstrated a remarkable ability to inactivate over 99% of Escherichia coli (E. Coli) within 20 min. The oxygen vacancies in the Ag/CuO-VO enhance interactions between oxygen species and the Ag/CuO-VO, leading to the accumulation of large amounts of reactive oxygen species (ROS). The generated ROS effectively disrupt both layers of the bacterial cell wall - the peptidoglycan and the phospholipid - as confirmed by Fourier Transform Infrared (FTIR) spectroscopy, culminating in cell death. This research presents a monolithic material capable of inactivating pathogenic microorganisms efficiently, offering a significant advancement in water sterilization technology.


Asunto(s)
Escherichia coli , Terapia por Láser , Escherichia coli/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Oxígeno/metabolismo , Cobre/química , Plata/química , Bacterias/metabolismo , Antibacterianos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...