Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Genome Res ; 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39237300

RESUMEN

Characterizing cell-cell communication and tracking its variability over time are crucial for understanding the coordination of biological processes mediating normal development, disease progression, and responses to perturbations such as therapies. Existing tools fail to capture time-dependent intercellular interactions, and primarily rely on existing databases compiled from limited contexts. We introduce DIISCO, a Bayesian framework designed to characterize the temporal dynamics of cellular interactions using single-cell RNA sequencing data from multiple time points. Our method utilizes structured Gaussian process regression to unveil time-resolved interactions among diverse cell types according to their coevolution and incorporates prior knowledge of receptor-ligand complexes. We show the interpretability of DIISCO in simulated data and new data collected from T cells co-cultured with lymphoma cells, demonstrating its potential to uncover dynamic cell-cell crosstalk.

2.
Blood Cancer Discov ; 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39236287

RESUMEN

Combined tracking of clonal evolution and chimeric cell phenotypes could enable detection of the key cellular populations associated with response following therapy, including after allogeneic hematopoietic stem cell transplantation (HSCT). We demonstrate that mitochondrial DNA (mtDNA) mutations co-evolve with somatic nuclear DNA mutations at relapse post-HSCT and provide a sensitive means to monitor these cellular populations. Further, detection of mtDNA mutations via single-cell ATAC with select antigen profiling by sequencing (ASAP-seq) simultaneously determines not only donor and recipient cells, but also their phenotype, at frequencies of 0.1-1%. Finally, integration of mtDNA mutations, surface markers, and chromatin accessibility profiles enables the phenotypic resolution of leukemic populations from normal immune cells, thereby providing fresh insights into residual donor-derived engraftment and short-term clonal evolution following therapy for post-transplant leukemia relapse. As throughput evolves, we envision future development of single-cell sequencing-based post-transplant monitoring as a powerful approach for guiding clinical decision making.

3.
Blood ; 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39241199

RESUMEN

Engineered cellular therapy with CD19-targeting chimeric antigen receptor T-cells (CAR-T) has revolutionized outcomes for patients with relapsed/refractory Large B-Cell Lymphoma (LBCL), but the cellular and molecular features associated with response remain largely unresolved. We analyzed serial peripheral blood samples ranging from day of apheresis (day -28/baseline) to 28 days after CAR-T infusion from 50 patients with LBCL treated with axicabtagene ciloleucel (axi-cel) by integrating single cell RNA and TCR sequencing (scRNA-seq/scTCR-seq), flow cytometry, and mass cytometry (CyTOF) to characterize features associated with response to CAR-T. Pretreatment patient characteristics associated with response included presence of B cells and increased lymphocyte-to-monocyte ratio (ALC/AMC). Infusion products from responders were enriched for clonally expanded, highly activated CD8+ T cells. We expanded these observations to 99 patients from the ZUMA-1 cohort and identified a subset of patients with elevated baseline B cells, 80% of whom were complete responders. We integrated B cell proportion 0.5% and ALC/AMC 1.2 into a two-factor predictive model and applied this model to the ZUMA-1 cohort. Estimated progression free survival (PFS) at 1 year in patients meeting one or both criteria was 65% versus 31% for patients meeting neither criterion. Our results suggest that patients' immunologic state at baseline affects likelihood of response to CAR-T through both modulation of the T cell apheresis product composition and promoting a more favorable circulating immune compartment prior to therapy. These baseline immunologic features, measured readily in the clinical setting prior to CAR-T, can be applied to predict response to therapy.

4.
Nat Biotechnol ; 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39169264

RESUMEN

T cell alloreactivity against minor histocompatibility antigens (mHAgs)-polymorphic peptides resulting from donor-recipient (D-R) disparity at sites of genetic polymorphisms-is at the core of the therapeutic effect of allogeneic hematopoietic cell transplantation (allo-HCT). Despite the crucial role of mHAgs in graft-versus-leukemia (GvL) and graft-versus-host disease (GvHD) reactions, it remains challenging to consistently link patient-specific mHAg repertoires to clinical outcomes. Here we devise an analytic framework to systematically identify mHAgs, including their detection on HLA class I ligandomes and functional verification of their immunogenicity. The method relies on the integration of polymorphism detection by whole-exome sequencing of germline DNA from D-R pairs with organ-specific transcriptional- and proteome-level expression. Application of this pipeline to 220 HLA-matched allo-HCT D-R pairs demonstrated that total and organ-specific mHAg load could independently predict the occurrence of acute GvHD and chronic pulmonary GvHD, respectively, and defined promising GvL targets, confirmed in a validation cohort of 58 D-R pairs, for the prevention or treatment of post-transplant disease recurrence.

5.
Brain Commun ; 6(3): fcae202, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38911266

RESUMEN

While voltage-gated potassium channels have critical roles in controlling neuronal excitability, they also have non-ion-conducting functions. Kv8.1, encoded by the KCNV1 gene, is a 'silent' ion channel subunit whose biological role is complex since Kv8.1 subunits do not form functional homotetramers but assemble with Kv2 to modify its ion channel properties. We profiled changes in ion channel expression in amyotrophic lateral sclerosis patient-derived motor neurons carrying a superoxide dismutase 1(A4V) mutation to identify what drives their hyperexcitability. A major change identified was a substantial reduction of KCNV1/Kv8.1 expression, which was also observed in patient-derived neurons with C9orf72 expansion. We then studied the effect of reducing KCNV1/Kv8.1 expression in healthy motor neurons and found it did not change neuronal firing but increased vulnerability to cell death. A transcriptomic analysis revealed dysregulated metabolism and lipid/protein transport pathways in KCNV1/Kv8.1-deficient motor neurons. The increased neuronal vulnerability produced by the loss of KCNV1/Kv8.1 was rescued by knocking down Kv2.2, suggesting a potential Kv2.2-dependent downstream mechanism in cell death. Our study reveals, therefore, unsuspected and distinct roles of Kv8.1 and Kv2.2 in amyotrophic lateral sclerosis-related neurodegeneration.

6.
J Inherit Metab Dis ; 47(4): 757-765, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38499449

RESUMEN

T cells have been shown to maintain a lower percentage (heteroplasmy) of the pathogenic m.3243A>G variant (MT-TL1, associated with maternally inherited diabetes and deafness [MIDD] and mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes [MELAS]). The mechanism(s) underlying this purifying selection, however, remain unknown. Here we report that purified patient memory CD4+ T cells have lower bulk m.3243A>G heteroplasmy compared to naïve CD4+ T cells. In vitro activation of naïve CD4+ m.3243A>G patient T cells results in lower bulk m.3243A>G heteroplasmy after proliferation. Finally, m.3243A>G patient T cell receptor repertoire sequencing reveals relative oligoclonality compared to controls. These data support a role for T cell activation in peripheral, purifying selection against high m.3243A>G heteroplasmy T cells at the level of the cell, in a likely cell-autonomous fashion.


Asunto(s)
Activación de Linfocitos , Síndrome MELAS , Humanos , Síndrome MELAS/genética , Linfocitos T CD4-Positivos/inmunología , Heteroplasmia/genética , ARN de Transferencia de Leucina/genética , Masculino , Femenino , ADN Mitocondrial/genética , Adulto
7.
bioRxiv ; 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38405900

RESUMEN

Understanding how intra-tumoral immune populations coordinate to generate anti-tumor responses following therapy can guide precise treatment prioritization. We performed systematic dissection of an established adoptive cellular therapy, donor lymphocyte infusion (DLI), by analyzing 348,905 single-cell transcriptomes from 74 longitudinal bone-marrow samples of 25 patients with relapsed myeloid leukemia; a subset was evaluated by protein-based spatial analysis. In acute myelogenous leukemia (AML) responders, diverse immune cell types within the bone-marrow microenvironment (BME) were predicted to interact with a clonally expanded population of ZNF683 + GZMB + CD8+ cytotoxic T lymphocytes (CTLs) which demonstrated in vitro specificity for autologous leukemia. This population, originating predominantly from the DLI product, expanded concurrently with NK and B cells. AML nonresponder BME revealed a paucity of crosstalk and elevated TIGIT expression in CD8+ CTLs. Our study highlights recipient BME differences as a key determinant of effective anti-leukemia response and opens new opportunities to modulate cell-based leukemia-directed therapy.

8.
Nat Commun ; 15(1): 32, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-38167262

RESUMEN

Single-cell transcriptomics has become the definitive method for classifying cell types and states, and can be augmented with genotype information to improve cell lineage identification. Due to constraints of short-read sequencing, current methods to detect natural genetic barcodes often require cumbersome primer panels and early commitment to targets. Here we devise a flexible long-read sequencing workflow and analysis pipeline, termed nanoranger, that starts from intermediate single-cell cDNA libraries to detect cell lineage-defining features, including single-nucleotide variants, fusion genes, isoforms, sequences of chimeric antigen and TCRs. Through systematic analysis of these classes of natural 'barcodes', we define the optimal targets for nanoranger, namely those loci close to the 5' end of highly expressed genes with transcript lengths shorter than 4 kB. As proof-of-concept, we apply nanoranger to longitudinal tracking of subclones of acute myeloid leukemia (AML) and describe the heterogeneous isoform landscape of thousands of marrow-infiltrating immune cells. We propose that enhanced cellular genotyping using nanoranger can improve the tracking of single-cell tumor and immune cell co-evolution.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Leucemia Mieloide Aguda , Humanos , Genotipo , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Fenotipo , Perfilación de la Expresión Génica/métodos
9.
Cancer Cell ; 41(10): 1803-1816.e8, 2023 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-37738974

RESUMEN

Unlike many other hematologic malignancies, Richter syndrome (RS), an aggressive B cell lymphoma originating from indolent chronic lymphocytic leukemia, is responsive to PD-1 blockade. To discover the determinants of response, we analyze single-cell transcriptome data generated from 17 bone marrow samples longitudinally collected from 6 patients with RS. Response is associated with intermediate exhausted CD8 effector/effector memory T cells marked by high expression of the transcription factor ZNF683, determined to be evolving from stem-like memory cells and divergent from terminally exhausted cells. This signature overlaps with that of tumor-infiltrating populations from anti-PD-1 responsive solid tumors. ZNF683 is found to directly target key T cell genes (TCF7, LMO2, CD69) and impact pathways of T cell cytotoxicity and activation. Analysis of pre-treatment peripheral blood from 10 independent patients with RS treated with anti-PD-1, as well as patients with solid tumors treated with anti-PD-1, supports an association of ZNF683high T cells with response.


Asunto(s)
Leucemia Linfocítica Crónica de Células B , Linfoma de Células B Grandes Difuso , Humanos , Leucemia Linfocítica Crónica de Células B/patología , Linfocitos T CD8-positivos , Linfoma de Células B Grandes Difuso/tratamiento farmacológico , Linfoma de Células B Grandes Difuso/genética , Linfoma de Células B Grandes Difuso/patología , Regulación de la Expresión Génica , Inmunoterapia
11.
Nat Med ; 29(1): 158-169, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36624313

RESUMEN

Richter syndrome (RS) arising from chronic lymphocytic leukemia (CLL) exemplifies an aggressive malignancy that develops from an indolent neoplasm. To decipher the genetics underlying this transformation, we computationally deconvoluted admixtures of CLL and RS cells from 52 patients with RS, evaluating paired CLL-RS whole-exome sequencing data. We discovered RS-specific somatic driver mutations (including IRF2BP2, SRSF1, B2M, DNMT3A and CCND3), recurrent copy-number alterations beyond del(9p21)(CDKN2A/B), whole-genome duplication and chromothripsis, which were confirmed in 45 independent RS cases and in an external set of RS whole genomes. Through unsupervised clustering, clonally related RS was largely distinct from diffuse large B cell lymphoma. We distinguished pathways that were dysregulated in RS versus CLL, and detected clonal evolution of transformation at single-cell resolution, identifying intermediate cell states. Our study defines distinct molecular subtypes of RS and highlights cell-free DNA analysis as a potential tool for early diagnosis and monitoring.


Asunto(s)
Leucemia Linfocítica Crónica de Células B , Linfoma de Células B Grandes Difuso , Humanos , Leucemia Linfocítica Crónica de Células B/genética , Linfoma de Células B Grandes Difuso/genética , Linfoma de Células B Grandes Difuso/patología , Factores de Empalme Serina-Arginina
12.
Blood ; 141(15): 1817-1830, 2023 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-36706355

RESUMEN

The challenge of eradicating leukemia in patients with acute myelogenous leukemia (AML) after initial cytoreduction has motivated modern efforts to combine synergistic active modalities including immunotherapy. Recently, the ETCTN/CTEP 10026 study tested the combination of the DNA methyltransferase inhibitor decitabine together with the immune checkpoint inhibitor ipilimumab for AML/myelodysplastic syndrome (MDS) either after allogeneic hematopoietic stem cell transplantation (HSCT) or in the HSCT-naïve setting. Integrative transcriptome-based analysis of 304 961 individual marrow-infiltrating cells for 18 of 48 subjects treated on study revealed the strong association of response with a high baseline ratio of T to AML cells. Clinical responses were predominantly driven by decitabine-induced cytoreduction. Evidence of immune activation was only apparent after ipilimumab exposure, which altered CD4+ T-cell gene expression, in line with ongoing T-cell differentiation and increased frequency of marrow-infiltrating regulatory T cells. For post-HSCT samples, relapse could be attributed to insufficient clearing of malignant clones in progenitor cell populations. In contrast to AML/MDS bone marrow, the transcriptomes of leukemia cutis samples from patients with durable remission after ipilimumab monotherapy showed evidence of increased infiltration with antigen-experienced resident memory T cells and higher expression of CTLA-4 and FOXP3. Altogether, activity of combined decitabine and ipilimumab is impacted by cellular expression states within the microenvironmental niche of leukemic cells. The inadequate elimination of leukemic progenitors mandates urgent development of novel approaches for targeting these cell populations to generate long-lasting responses. This trial was registered at www.clinicaltrials.gov as #NCT02890329.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Leucemia Mieloide Aguda , Síndromes Mielodisplásicos , Humanos , Ipilimumab/uso terapéutico , Decitabina/uso terapéutico , Síndromes Mielodisplásicos/genética , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Recurrencia
14.
Blood Cancer Discov ; 4(2): 150-169, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36468984

RESUMEN

Transformation to aggressive disease histologies generates formidable clinical challenges across cancers, but biological insights remain few. We modeled the genetic heterogeneity of chronic lymphocytic leukemia (CLL) through multiplexed in vivo CRISPR-Cas9 B-cell editing of recurrent CLL loss-of-function drivers in mice and recapitulated the process of transformation from indolent CLL into large cell lymphoma [i.e., Richter syndrome (RS)]. Evolutionary trajectories of 64 mice carrying diverse combinatorial gene assortments revealed coselection of mutations in Trp53, Mga, and Chd2 and the dual impact of clonal Mga/Chd2 mutations on E2F/MYC and interferon signaling dysregulation. Comparative human and murine RS analyses demonstrated tonic PI3K signaling as a key feature of transformed disease, with constitutive activation of the AKT and S6 kinases, downmodulation of the PTEN phosphatase, and convergent activation of MYC/PI3K transcriptional programs underlying enhanced sensitivity to MYC/mTOR/PI3K inhibition. This robust experimental system presents a unique framework to study lymphoid biology and therapy. SIGNIFICANCE: Mouse models reflective of the genetic complexity and heterogeneity of human tumors remain few, including those able to recapitulate transformation to aggressive disease histologies. Herein, we model CLL transformation into RS through multiplexed in vivo gene editing, providing key insight into the pathophysiology and therapeutic vulnerabilities of transformed disease. This article is highlighted in the In This Issue feature, p. 101.


Asunto(s)
Leucemia Linfocítica Crónica de Células B , Linfoma de Células B Grandes Difuso , Linfoma no Hodgkin , Humanos , Animales , Ratones , Leucemia Linfocítica Crónica de Células B/genética , Leucemia Linfocítica Crónica de Células B/terapia , Fosfatidilinositol 3-Quinasas/genética , Linfoma de Células B Grandes Difuso/genética , Linfocitos B
15.
Cancer Res ; 83(5): 667-672, 2023 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-36469010

RESUMEN

Murine models are indispensable tools for functional genomic studies and preclinical testing of novel therapeutic approaches. Mitochondrial single-cell assay for transposase-accessible chromatin using sequencing (mtscATAC-seq) enables the dissection of cellular heterogeneity and clonal dynamics by capturing chromatin accessibility, copy-number variations (CNV), and mitochondrial DNA (mtDNA) mutations, yet its applicability to murine studies remains unexplored. By leveraging mtscATAC-seq in novel chronic lymphocytic leukemia and Richter syndrome mouse models, we report the detection of mtDNA mutations, particularly in highly proliferative murine cells, alongside CNV and chromatin state changes indicative of clonal evolution upon secondary transplant. This study thus demonstrates the feasibility and utility of multi-modal single-cell and natural barcoding approaches to characterize murine cancer models. SIGNIFICANCE: mtDNA mutations can serve as natural barcodes to enable lineage tracing in murine cancer models, which can be used to provide new insights into disease biology and to identify therapeutic vulnerabilities.


Asunto(s)
ADN Mitocondrial , Neoplasias , Animales , Ratones , ADN Mitocondrial/genética , Mitocondrias/genética , Cromatina , Mutación , Neoplasias/genética
16.
Immunity ; 55(10): 1940-1952.e5, 2022 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-36223726

RESUMEN

T cells mediate antigen-specific immune responses to disease through the specificity and diversity of their clonotypic T cell receptors (TCRs). Determining the spatial distributions of T cell clonotypes in tissues is essential to understanding T cell behavior, but spatial sequencing methods remain unable to profile the TCR repertoire. Here, we developed Slide-TCR-seq, a 10-µm-resolution method, to sequence whole transcriptomes and TCRs within intact tissues. We confirmed the ability of Slide-TCR-seq to map the characteristic locations of T cells and their receptors in mouse spleen. In human lymphoid germinal centers, we identified spatially distinct TCR repertoires. Profiling T cells in renal cell carcinoma and melanoma specimens revealed heterogeneous immune responses: T cell states and infiltration differed intra- and inter-clonally, and adjacent tumor and immune cells exhibited distinct gene expression. Altogether, our method yields insights into the spatial relationships between clonality, neighboring cell types, and gene expression that drive T cell responses.


Asunto(s)
Receptores de Antígenos de Linfocitos T , Transcriptoma , Inmunidad Adaptativa/genética , Animales , Humanos , Ratones , Linfocitos T
17.
Nat Med ; 28(9): 1848-1859, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36097221

RESUMEN

Chimeric antigen receptor (CAR)-T cell therapy has revolutionized the treatment of hematologic malignancies. Approximately half of patients with refractory large B cell lymphomas achieve durable responses from CD19-targeting CAR-T treatment; however, failure mechanisms are identified in only a fraction of cases. To gain new insights into the basis of clinical response, we performed single-cell transcriptome sequencing of 105 pretreatment and post-treatment peripheral blood mononuclear cell samples, and infusion products collected from 32 individuals with large B cell lymphoma treated with either of two CD19 CAR-T products: axicabtagene ciloleucel (axi-cel) or tisagenlecleucel (tisa-cel). Expansion of proliferative memory-like CD8 clones was a hallmark of tisa-cel response, whereas axi-cel responders displayed more heterogeneous populations. Elevations in CAR-T regulatory cells among nonresponders to axi-cel were detected, and these populations were capable of suppressing conventional CAR-T cell expansion and driving late relapses in an in vivo model. Our analyses reveal the temporal dynamics of effective responses to CAR-T therapy, the distinct molecular phenotypes of CAR-T cells with differing designs, and the capacity for even small increases in CAR-T regulatory cells to drive relapse.


Asunto(s)
Productos Biológicos , Linfoma de Células B Grandes Difuso , Receptores Quiméricos de Antígenos , Antígenos CD19 , Humanos , Inmunoterapia Adoptiva/efectos adversos , Leucocitos Mononucleares , Linfoma de Células B Grandes Difuso/patología , Recurrencia Local de Neoplasia/tratamiento farmacológico , Receptores Quiméricos de Antígenos/genética
18.
Cancer Immunol Res ; 10(7): 788-799, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35605261

RESUMEN

We applied our computational algorithm TRUST4 to assemble immune receptor (T-cell receptor/B-cell receptor) repertoires from approximately 12,000 RNA sequencing samples from The Cancer Genome Atlas and seven immunotherapy studies. From over 35 million assembled complete complementary-determining region 3 sequences, we observed that the expression of CCL5 and MZB1 is the most positively correlated genes with T-cell clonal expansion and B-cell clonal expansion, respectively. We analyzed amino acid evolution during B-cell receptor somatic hypermutation and identified tyrosine as the preferred residue. We found that IgG1+IgG3 antibodies together with FcRn were associated with complement-dependent cytotoxicity and antibody-dependent cellular cytotoxicity or phagocytosis. In addition to B-cell infiltration, we discovered that B-cell clonal expansion and IgG1+IgG3 antibodies are also correlated with better patient outcomes. Finally, we created a website, VisualizIRR, for users to interactively explore and visualize the immune repertoires in this study. See related Spotlight by Liu and Han, p. 786.


Asunto(s)
Neoplasias , Receptores de Antígenos de Linfocitos T , Humanos , Inmunoglobulina G/inmunología , Factores Inmunológicos , Inmunoterapia , Neoplasias/terapia , Receptores de Antígenos de Linfocitos B/genética , Receptores de Antígenos de Linfocitos T/genética , Receptores Inmunológicos/genética
19.
Nature ; 605(7910): 532-538, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35508657

RESUMEN

Within the tumour microenvironment, CD4+ T cells can promote or suppress antitumour responses through the recognition of antigens presented by human leukocyte antigen (HLA) class II molecules1,2, but how cancers co-opt these physiologic processes to achieve immune evasion remains incompletely understood. Here we performed in-depth analysis of the phenotype and tumour specificity of CD4+ T cells infiltrating human melanoma specimens, finding that exhausted cytotoxic CD4+ T cells could be directly induced by melanoma cells through recognition of HLA class II-restricted neoantigens, and also HLA class I-restricted tumour-associated antigens. CD4+ T regulatory (TReg) cells could be indirectly elicited through presentation of tumour antigens via antigen-presenting cells. Notably, numerous tumour-reactive CD4+ TReg clones were stimulated directly by HLA class II-positive melanoma and demonstrated specificity for melanoma neoantigens. This phenomenon was observed in the presence of an extremely high tumour neoantigen load, which we confirmed to be associated with HLA class II positivity through the analysis of 116 melanoma specimens. Our data reveal the landscape of infiltrating CD4+ T cells in melanoma and point to the presentation of HLA class II-restricted neoantigens and direct engagement of immunosuppressive CD4+ TReg cells as a mechanism of immune evasion that is favoured in HLA class II-positive melanoma.


Asunto(s)
Antígenos de Neoplasias , Linfocitos T CD4-Positivos , Melanoma , Neoplasias Cutáneas , Células Presentadoras de Antígenos , Antígenos de Neoplasias/inmunología , Antígenos HLA , Humanos , Melanoma/inmunología , Fenotipo , Neoplasias Cutáneas/inmunología , Células Tumorales Cultivadas , Microambiente Tumoral
20.
Clin Cancer Res ; 28(15): 3356-3366, 2022 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-35443043

RESUMEN

PURPOSE: Although local tissue-based immune responses are critical for elucidating direct tumor-immune cell interactions, peripheral immune responses are increasingly recognized as occupying an important role in anticancer immunity. We evaluated serial blood samples from patients with advanced epithelial ovarian cancer (EOC) undergoing standard-of-care neoadjuvant carboplatin and paclitaxel chemotherapy (including dexamethasone for prophylaxis of paclitaxel-associated hypersensitivity reactions) to characterize the evolution of the peripheral immune cell function and composition across the course of therapy. EXPERIMENTAL DESIGN: Serial blood samples from 10 patients with advanced high-grade serous ovarian cancer treated with neoadjuvant chemotherapy (NACT) were collected before the initiation of chemotherapy, after the third and sixth cycles, and approximately 2 months after completion of chemotherapy. T-cell function was evaluated using ex vivo IFNγ ELISpot assays, and the dynamics of T-cell repertoire and immune cell composition were assessed using bulk and single-cell RNA sequencing (RNAseq). RESULTS: T cells exhibited an improved response to viral antigens after NACT, which paralleled the decrease in CA125 levels. Single-cell analysis revealed increased numbers of memory T-cell receptor (TCR) clonotypes and increased central memory CD8+ and regulatory T cells throughout chemotherapy. Finally, administration of NACT was associated with increased monocyte frequency and expression of HLA class II and antigen presentation genes; single-cell RNAseq analyses showed that although driven largely by classical monocytes, increased class II gene expression was a feature observed across monocyte subpopulations after chemotherapy. CONCLUSIONS: NACT may alleviate tumor-associated immunosuppression by reducing tumor burden and may enhance antigen processing and presentation. These findings have implications for the successful combinatorial applications of immune checkpoint blockade and therapeutic vaccine approaches in EOC.


Asunto(s)
Terapia Neoadyuvante , Neoplasias Ováricas , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Carcinoma Epitelial de Ovario/tratamiento farmacológico , Carcinoma Epitelial de Ovario/patología , Quimioterapia Adyuvante , Femenino , Humanos , Neoplasias Ováricas/patología , Paclitaxel
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA