Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Death Differ ; 22(7): 1144-57, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25501596

RESUMEN

Erythropoiesis is a tightly regulated process in which multipotential hematopoietic stem cells produce mature red blood cells. Here we show that deletion of poly(ADP-ribose) polymerase-2 (PARP-2) in mice leads to chronic anemia at steady state, despite increased erythropoietin plasma levels, a phenomenon not observed in mice lacking PARP-1. Loss of PARP-2 causes shortened lifespan of erythrocytes and impaired differentiation of erythroid progenitors. In erythroblasts, PARP-2 deficiency triggers replicative stress, as indicated by the presence of micronuclei, the accumulation of γ-H2AX (phospho-histone H2AX) in S-phase cells and constitutive CHK1 and replication protein A phosphorylation. Transcriptome analyses revealed the activation of the p53-dependent DNA-damage response pathways in PARP-2-deficient cells, culminating in the upregulation of cell-cycle and cell death regulators, concomitant with G2/M arrest and apoptosis. Strikingly, while loss of the proapoptotic p53 target gene Puma restored hematocrit levels in the PARP-2-deficient mice, loss of the cell-cycle regulator and CDK inhibitor p21 leads to perinatal death by exacerbating impaired fetal liver erythropoiesis in PARP-2-deficient embryos. Although the anemia displayed by PARP-2-deficient mice is compatible with life, mice die rapidly when exposed to stress-induced enhanced hemolysis. Our results pinpoint an essential role for PARP-2 in erythropoiesis by limiting replicative stress that becomes essential in the absence of p21 and in the context of enhanced hemolysis, highlighting the potential effect that might arise from the design and use of PARP inhibitors that specifically inactivate PARP proteins.


Asunto(s)
Replicación del ADN , Células Precursoras Eritroides/metabolismo , Eritropoyesis/fisiología , Poli(ADP-Ribosa) Polimerasas/genética , Estrés Fisiológico/genética , Animales , Apoptosis , Eritropoyesis/genética , Puntos de Control de la Fase G2 del Ciclo Celular , Eliminación de Gen , Histonas/metabolismo , Ratones
2.
Cell Death Differ ; 20(4): 546-57, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23238565

RESUMEN

Activation of NF-κB (nuclear factor of kappa light chain gene enhancer in B cells) in response to DNA damage is considered to contribute to repair of genetic lesions, increased cell survival and cytokine release. The molecular mechanisms orchestrating this cytoplasmic event involve core components of the nuclear DNA damage response machinery, including ATM-kinase (ataxia telangiectasia mutated kinase) and PARP-1 (poly (ADP-ribose) polymerase 1). The physiological consequences of defective NF-κB activation in this context, however, remain poorly investigated. Here we report on the role of the 'p53-induced protein with a death domain', PIDD, which appears rate limiting in this process, as is PARP-1. Despite impaired NF-κB activation, DNA damage did not increase cell death or reduce clonal survival of various cell types lacking PIDD, such as mouse embryonic fibroblasts or stem and progenitor cells of the hematopoietic system. Furthermore, lymphomagenesis induced by γ-irradiation (IR) was unaffected by deficiency for PIDD or PARP-1, indicating that loss of DNA damage-triggered NF-κB signalling does not affect IR-driven tumorigenesis. However, loss of either gene compromised cytokine release after acute IR injury. Hence, we propose that NF-κB's most notable function after DNA damage in primary cells is related to the release of cytokines, thereby contributing to sterile inflammation.


Asunto(s)
Citocinas/metabolismo , Daño del ADN , Proteínas Adaptadoras de Señalización del Receptor del Dominio de Muerte/metabolismo , FN-kappa B/metabolismo , Animales , Apoptosis/efectos de la radiación , Proteínas de la Ataxia Telangiectasia Mutada , Proteínas de Ciclo Celular/metabolismo , Supervivencia Celular/efectos de los fármacos , Transformación Celular Neoplásica/efectos de la radiación , Células Cultivadas , Daño del ADN/efectos de la radiación , Proteínas de Unión al ADN/metabolismo , Proteínas Adaptadoras de Señalización del Receptor del Dominio de Muerte/genética , Factor Estimulante de Colonias de Granulocitos/farmacología , Quinasa I-kappa B/antagonistas & inhibidores , Quinasa I-kappa B/genética , Quinasa I-kappa B/metabolismo , Factor Estimulante de Colonias de Macrófagos/farmacología , Ratones , Poli(ADP-Ribosa) Polimerasas/genética , Poli(ADP-Ribosa) Polimerasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Radiación Ionizante , Transducción de Señal , Factor de Transcripción ReIA/metabolismo , Transcripción Genética , Proteínas Supresoras de Tumor/metabolismo
3.
Oncogene ; 26(6): 905-16, 2007 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-16862171

RESUMEN

Ceramidases (CDases) play a key role in cancer therapy through enhanced conversion of ceramide into sphingosine 1-phosphate (S1P), but their involvement in hepatocarcinogenesis is unknown. Here, we report that daunorubicin (DNR) activated acid CDase post-transcriptionally in established human (HepG2 cells) or mouse (Hepa1c1c7) hepatoma cell lines as well as in primary cells from murine liver tumors, but not in cultured mouse hepatocytes. Acid CDase silencing by small interfering RNA (siRNA) or pharmacological inhibition with N-oleoylethanolamine (NOE) enhanced the ceramide to S1P balance compared to DNR alone, sensitizing hepatoma cells (HepG2, Hep-3B, SK-Hep and Hepa1c1c7) to DNR-induced cell death. DNR plus NOE or acid CDase siRNA-induced cell death was preceded by ultrastructural changes in mitochondria, stimulation of reactive oxygen species generation, release of Smac/DIABLO and cytochrome c and caspase-3 activation. In addition, in vivo siRNA treatment targeting acid CDase reduced tumor growth in liver tumor xenografts of HepG2 cells and enhanced DNR therapy. Thus, acid CDase promotes hepatocarcinogenesis and its antagonism may be a promising strategy in the treatment of liver cancer.


Asunto(s)
Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/patología , Quimioterapia , Etanolaminas/farmacología , Galactosilgalactosilglucosilceramidasa/antagonistas & inhibidores , Galactosilgalactosilglucosilceramidasa/genética , ARN Interferente Pequeño/genética , Animales , Carcinoma Hepatocelular/enzimología , Carcinoma Hepatocelular/genética , Caspasa 3/metabolismo , Proliferación Celular/efectos de los fármacos , Daunorrubicina/farmacología , Daunorrubicina/toxicidad , Endocannabinoides , Galactosilgalactosilglucosilceramidasa/metabolismo , Humanos , Lisofosfolípidos/metabolismo , Ratones , Microscopía Electrónica de Transmisión , Mitocondrias/efectos de los fármacos , Mitocondrias/enzimología , Ácidos Oléicos , Inhibidores de Proteasas/farmacología , ARN Mensajero/genética , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA