Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 4310, 2023 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-37463936

RESUMEN

Although Poly(ADP-ribose)-polymerases (PARPs) are key regulators of genome stability, how site-specific ADP-ribosylation regulates DNA repair is unclear. Here, we describe a novel role for PARP1 and PARP2 in regulating Rad52-dependent replication fork repair to maintain cell viability when homologous recombination is dysfunctional, suppress replication-associated DNA damage, and maintain genome stability. Mechanistically, Mre11 and ATM are required for induction of PARP activity in response to replication stress that in turn promotes break-induced replication (BIR) through assembly of Rad52 at stalled/damaged replication forks. Further, by mapping ADP-ribosylation sites induced upon replication stress, we identify that PolD3 is a target for PARP1/PARP2 and that its site-specific ADP-ribosylation is required for BIR activity, replication fork recovery and genome stability. Overall, these data identify a critical role for Mre11-dependent PARP activation and site-specific ADP-ribosylation in regulating BIR to maintain genome integrity during DNA synthesis.


Asunto(s)
Inhibidores de Poli(ADP-Ribosa) Polimerasas , Serina , Humanos , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Poli(ADP-Ribosa) Polimerasa-1/genética , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , ADP-Ribosilación , Replicación del ADN , Daño del ADN , Reparación del ADN , Inestabilidad Genómica
2.
Cancer Res ; 82(21): 3962-3973, 2022 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-36273494

RESUMEN

Gastric cancer represents the third leading cause of global cancer mortality and an area of unmet clinical need. Drugs that target the DNA damage response, including ATR inhibitors (ATRi), have been proposed as novel targeted agents in gastric cancer. Here, we sought to evaluate the efficacy of ATRi in preclinical models of gastric cancer and to understand how ATRi resistance might emerge as a means to identify predictors of ATRi response. A positive selection genome-wide CRISPR-Cas9 screen identified candidate regulators of ATRi resistance in gastric cancer. Loss-of-function mutations in either SMG8 or SMG9 caused ATRi resistance by an SMG1-mediated mechanism. Although ATRi still impaired ATR/CHK1 signaling in SMG8/9-defective cells, other characteristic responses to ATRi exposure were not seen, such as changes in ATM/CHK2, γH2AX, phospho-RPA, or 53BP1 status or changes in the proportions of cells in S- or G2-M-phases of the cell cycle. Transcription/replication conflicts (TRC) elicited by ATRi exposure are a likely cause of ATRi sensitivity, and SMG8/9-defective cells exhibited a reduced level of ATRi-induced TRCs, which could contribute to ATRi resistance. These observations suggest ATRi elicits antitumor efficacy in gastric cancer but that drug resistance could emerge via alterations in the SMG8/9/1 pathway. SIGNIFICANCE: These findings reveal how cancer cells acquire resistance to ATRi and identify pathways that could be targeted to enhance the overall effectiveness of these inhibitors.


Asunto(s)
Antineoplásicos , Neoplasias Gástricas , Humanos , Antineoplásicos/farmacología , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Inhibidores de Proteínas Quinasas , Proteínas Serina-Treonina Quinasas , Péptidos y Proteínas de Señalización Intracelular/metabolismo
3.
Oncotarget ; 7(16): 22543-55, 2016 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-26968814

RESUMEN

Somatic mutation analysis represents a useful tool in selecting personalized therapy. The aim of our study was to determine the presence of common genetic events affecting actionable oncogenes using a MassARRAY technology in patients with advanced solid tumors who were potential candidates for target-based therapies. The analysis of 238 mutations across 19 oncogenes was performed in 197 formalin-fixed paraffin-embedded samples of different tumors using the OncoCarta Panel v1.0 (Sequenom Hamburg, Germany). Of the 197 specimens, 97 (49.2%) presented at least one mutation. Forty-nine different oncogenic mutations in 16 genes were detected. Mutations in KRAS and PIK3CA were detected in 40/97 (41.2%) and 30/97 (30.9%) patients respectively. Thirty-one patients (32.0%) had mutations in two genes, 20 of them (64.5%) initially diagnosed with colorectal cancer. The co-occurrence of mutation involved mainly KRAS, PIK3CA, KIT and RET. Mutation profiles were validated using a customized panel and the Junior Next-Generation Sequencing technology (GS-Junior 454, Roche). Twenty-eight patients participated in early clinical trials or received specific treatments according to the molecular characterization (28.0%). MassARRAY technology is a rapid and effective method for identifying key cancer-driving mutations across a large number of samples, which allows for a more appropriate selection for personalized therapies.


Asunto(s)
Análisis Mutacional de ADN/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Neoplasias/genética , Medicina de Precisión/métodos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Persona de Mediana Edad
4.
Oncotarget ; 6(29): 26935-45, 2015 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-26334097

RESUMEN

Genetic and epigenetic alterations play an important role in gastric cancer (GC) pathogenesis. Aberrations of the phosphatidylinositol-3-kinase signaling pathway are well described. However, emerging genes have been described such as, the chromatin remodeling gene ARID1A. Our aim was to determine the expression levels of four GC-related genes, ARID1A, CDH1, cMET and PIK3CA, and 14 target-related microRNAs (miRNAs). We compared mRNA and miRNA expression levels among 66 gastric tumor and normal adjacent mucosa samples using quantitative real-time reverse transcription PCR. Moreover, ARID1A, cMET and PIK3CA protein levels were assessed by immunohistochemistry (IHC). Finally, gene and miRNAs associations with clinical characteristics and outcome were also evaluated. An increased cMET and PIK3CA mRNA expression was found in 78.0% (P = 2.20 × 10-5) and 73.8% (P = 1.00 × 10-3) of the tumors, respectively. Moreover, IHC revealed that cMET and PIK3CA expression was positive in 63.6% and 87.8% of the tumors, respectively. Six miRNAs had significantly different expression between paired-samples, finding five up-regulated [miR-223-3p (P = 1.65 × 10-6), miR-19a-3p (P = 1.23 × 10-4), miR-128-3p (P = 3.49 × 10-4), miR-130b-3p (P = 1.00 × 10-3) and miR-34a-5p (P = 4.00 × 10-3)] and one down-regulated [miR-124-3p (P = 0.03)]. Our data suggest that cMET, PIK3CA and target-related miRNAs play an important role in GC and may serve as potential targets for therapy.


Asunto(s)
Cadherinas/metabolismo , MicroARNs/metabolismo , Proteínas Nucleares/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-met/metabolismo , Neoplasias Gástricas/genética , Factores de Transcripción/metabolismo , Anciano , Antígenos CD , Biomarcadores de Tumor , Cromatina/química , Fosfatidilinositol 3-Quinasa Clase I , Proteínas de Unión al ADN , Epigénesis Genética , Femenino , Mucosa Gástrica/patología , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Inmunohistoquímica , Masculino , Persona de Mediana Edad , ARN Mensajero/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Neoplasias Gástricas/metabolismo
5.
Eur J Cancer ; 50(18): 3168-77, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25457634

RESUMEN

Telomere length has been associated with the development of cancer. Studies have shown that shorter telomere length may be related to a decreased risk of cutaneous melanoma. Furthermore, deregulation of the telomere-maintaining gene complexes, has been related to this oncogenic process. Some variants in these genes seem to be correlated with a change in telomerase expression. We examined the effect of 10 single nucleotide polymorphisms (SNPs) in the TERT gene (encoding telomerase), one SNP in the related TERT-CLPTM1L locus and one SNP in the TRF1 gene with telomere length, and its influence on melanoma risk in 970 Spanish cases and 733 Spanish controls. Genotypes were determined using KASP technology, and telomere length was measured by quantitative polymerase chain reaction (PCR) on DNA extracted from peripheral blood leucocytes. Our results demonstrate that shorter telomere length is associated with a decreased risk of melanoma in our population (global p-value, 2.69×10(-11)), which may be caused by a diminution of proliferative potential of nevi (melanoma precursor cells). We also obtained significant results when we tested the association between rs401681 variant (TERT-CLPTM1L locus) with melanoma risk (Odds ratio, OR; 95% confidence interval, CI=1.24 (1.08-1.43); p-value, 3×10(-3)). This is the largest telomere-related study undertaken in a Spanish population to date. Furthermore, this study represents a comprehensive analysis of some of the most relevant telomere pathway genes in relation to cutaneous melanoma susceptibility.


Asunto(s)
Melanoma/genética , Proteínas de la Membrana/genética , Polimorfismo de Nucleótido Simple/genética , Neoplasias Cutáneas/genética , Telomerasa/genética , Telómero/genética , Adulto , Estudios de Casos y Controles , Femenino , Frecuencia de los Genes , Predisposición Genética a la Enfermedad , Humanos , Masculino , Persona de Mediana Edad , Factores de Riesgo , Proteína 1 de Unión a Repeticiones Teloméricas/genética , Melanoma Cutáneo Maligno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...