Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Cell Rep ; 43(4): 114053, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38578824

In the search for much-needed new antibacterial chemical matter, a myriad of compounds have been reported in academic and pharmaceutical screening endeavors. Only a small fraction of these, however, are characterized with respect to mechanism of action (MOA). Here, we describe a pipeline that categorizes transcriptional responses to antibiotics and provides hypotheses for MOA. 3D-printed imaging hardware PFIboxes) profiles responses of Escherichia coli promoter-GFP fusions to more than 100 antibiotics. Notably, metergoline, a semi-synthetic ergot alkaloid, mimics a DNA replication inhibitor. In vitro supercoiling assays confirm this prediction, and a potent analog thereof (MLEB-1934) inhibits growth at 0.25 µg/mL and is highly active against quinolone-resistant strains of methicillin-resistant Staphylococcus aureus. Spontaneous suppressor mutants map to a seldom explored allosteric binding pocket, suggesting a mechanism distinct from DNA gyrase inhibitors used in the clinic. In all, the work highlights the potential of this platform to rapidly assess MOA of new antibacterial compounds.


Anti-Bacterial Agents , DNA Gyrase , Escherichia coli , Topoisomerase II Inhibitors , Topoisomerase II Inhibitors/pharmacology , DNA Gyrase/metabolism , DNA Gyrase/genetics , Anti-Bacterial Agents/pharmacology , Escherichia coli/drug effects , Escherichia coli/genetics , Escherichia coli/metabolism , Transcription, Genetic/drug effects , Methicillin-Resistant Staphylococcus aureus/drug effects , Methicillin-Resistant Staphylococcus aureus/genetics , Microbial Sensitivity Tests
2.
Ann N Y Acad Sci ; 1519(1): 74-93, 2023 01.
Article En | MEDLINE | ID: mdl-36447334

As the global burden of antibiotic resistance continues to grow, creative approaches to antibiotic discovery are needed to accelerate the development of novel medicines. A rapidly progressing computational revolution-artificial intelligence-offers an optimistic path forward due to its ability to alleviate bottlenecks in the antibiotic discovery pipeline. In this review, we discuss how advancements in artificial intelligence are reinvigorating the adoption of past antibiotic discovery models-namely natural product exploration and small molecule screening. We then explore the application of contemporary machine learning approaches to emerging areas of antibiotic discovery, including antibacterial systems biology, drug combination development, antimicrobial peptide discovery, and mechanism of action prediction. Lastly, we propose a call to action for open access of high-quality screening datasets and interdisciplinary collaboration to accelerate the rate at which machine learning models can be trained and new antibiotic drugs can be developed.


Anti-Bacterial Agents , Artificial Intelligence , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Drug Discovery , Machine Learning , Drug Resistance, Microbial
3.
Langmuir ; 36(40): 11899-11907, 2020 10 13.
Article En | MEDLINE | ID: mdl-32903014

The safe storage of blood is of fundamental importance to health care systems all over the world. Currently, plastic bags are used for the collection and storage of donated blood and are typically made of poly(vinyl chloride) (PVC) plasticized with di-2-ethylhexyl phthalate (DEHP). DEHP is known to migrate into packed red blood cells (RBC) and has been found to extend their shelf life. It has been speculated that DEHP incorporates itself into the RBC membrane and alters membrane properties, thereby reducing susceptibility to hemolysis and morphological deterioration. Here, we used high-resolution X-ray diffraction and molecular dynamics (MD) simulations to study the interaction between DEHP and model POPC lipid membranes at high (9 mol %) and low (1 mol %) concentrations of DEHP. At both concentrations, DEHP was found to spontaneously partition into the bilayer. At high concentrations, DEHP molecules were found to aggregate in the aqueous phase before inserting as clusters into the membrane. The presence of DEHP in the bilayers resulted in subtle, yet statistically significant, alterations in several membrane properties in both the X-ray diffraction experiments and MD simulations. DEHP led to (1) an increase of membrane width and (2) an increase in the area per lipid. It was also found to (3) increase the deuterium order parameter, however, (4) decrease membrane orientation, indicating the formation of thicker, stiffer membranes with increased local curvature. The observed effects of DEHP on lipid bilayers may help to better understand its effect on RBC membranes in increasing the longevity of stored blood by improving membrane stability.


Diethylhexyl Phthalate , Plasticizers , Blood Preservation , Diethylhexyl Phthalate/toxicity , Erythrocytes , Lipids , Phthalic Acids , Plasticizers/toxicity , Polyvinyl Chloride
...