Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 15(40): 47715-47724, 2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37769228

RESUMEN

Quasi van der Waals epitaxy is an approach to constructing the combination of 2D and 3D materials. Here, we quantify and discuss the 2D/3D interface structure and the corresponding features in metal/muscovite systems. High-resolution scanning transmission electron microscopy reveals the atomic arrangement at the interface. The theoretical results explain the formation mechanism and predict the mechanical robustness of these metal/muscovite quasi van der Waals epitaxies. The evidence of superior interface quality is delivered according to the outstanding performance of the designed systems in both retention (>105 s) and cycling tests (>105 cycles) through electromechanical measurements. With high-temperature X-ray reciprocal space mapping, the unique anisotropy of thermal expansion is discovered and predicted to sustain the thermal stress with a sizable thermal actuation. A maximum bending curvature of 264 m-1 at 243 °C can be obtained in the silver/muscovite heteroepitaxy. The electrothermal and photothermal methods show a fast response to thermal stress and demonstrate the interface robustness.

2.
Adv Mater ; 35(41): e2302979, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37378645

RESUMEN

The application of high-entropy oxide (HEO) has attracted significant attention in recent years owing to their unique structural characteristics, such as excellent electrochemical properties and long-term cycling stability. However, the application of resistive random-access memory (RRAM) has not been extensively studied, and the switching mechanism of HEO-based RRAM has yet to be thoroughly investigated. In this study, HEO (Cr, Mn, Fe, Co, Ni)3 O4 with a spinel structure is epitaxially grown on a Nb:STO conductive substrate, and Pt metal is deposited as the top electrode. After the resistive-switching operation, some regions of the spinel structure are transformed into a rock-salt structure and analyzed using advanced transmission electron microscopy and scanning transmission electron microscopy. From the results of X-ray photoelectron spectroscopy and electron energy loss spectroscopy, only specific elements would change their valence state, which results in excellent resistive-switching properties with a high on/off ratio on the order of 105 , outstanding endurance (>4550 cycles), long retention time (>104 s), and high stability, which suggests that HEO is a promising RRAM material.

3.
Adv Sci (Weinh) ; 10(5): e2205012, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36529956

RESUMEN

Li7 La3 Zr2 O12 (LLZO)-based all-solid-state Li batteries (SSLBs) are very attractive next-generation energy storage devices owing to their potential for achieving enhanced safety and improved energy density. However, the rigid nature of the ceramics challenges the SSLB fabrication and the afterward interfacial stability during electrochemical cycling. Here, a promising LLZO-based SSLB with a high areal capacity and stable cycle performance over 100 cycles is demonstrated. In operando transmission electron microscopy (TEM) is used for successfully demonstrating and investigating the delithiation/lithiation process and understanding the capacity degradation mechanism of the SSLB on an atomic scale. Other than the interfacial delamination between LLZO and LiCoO2 (LCO) owing to the stress evolvement during electrochemical cycling, oxygen deficiency of LCO not only causes microcrack formation in LCO but also partially decomposes LCO into metallic Co and is suggested to contribute to the capacity degradation based on the atomic-scale insights. When discharging the SSLB to a voltage of ≈1.2 versus Li/Li+ , severe capacity fading from the irreversible decomposition of LCO into metallic Co and Li2 O is observed under in operando TEM. These observations reveal the capacity degradation mechanisms of the LLZO-based SSLB, which provides important information for future LLZO-based SSLB developments.

4.
Small ; 18(51): e2205306, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36328712

RESUMEN

Recently, perovskite (PV) oxides with ABO3 structures have attracted considerable interest from scientists owing to their functionality. In this study, CaFeOx is introduced to reveal the resistive switching properties and mechanism of oxygen vacancy transition in PV and brownmillerite (BM) structures. BM-CaFeO2.5 is grown on an Nb-STO conductive substrate epitaxially. CaFeOx exhibits excellent endurance and reliability. In addition, the CaFeOx also demonstrates an electroforming-free characteristic and multilevel resistance properties. To construct the switching mechanism, high-resolution transmission electron microscopy is used to observe the topotactic phase change in CaFeOx . In addition, scanning TEM and electron energy loss spectroscopy show the structural evolution and valence state variation of CaFeOx after the switching behavior. This study not only reveals the switching mechanism of CaFeOx , but also provides a PV oxide option for the dielectric material in resistive random-access memory (RRAM) devices.

5.
Nano Lett ; 22(19): 7944-7951, 2022 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-36129470

RESUMEN

In this study, facile salt-assisted chemical vapor deposition (CVD) was used to synthesize ultrathin non-van der Waals chromium sulfide (Cr2S3) with a thickness of ∼1.9 nm. The structural transformation of as-grown Cr2S3 was studied using advanced in situ heating techniques combined with transmission electron microscopy (TEM). Two-dimensional (2D) and quasi-one-dimensional (1D) samples were fabricated to investigate the connection between specific planes and the dynamic behavior of the structural variation. The rearrangement of atoms during the phase transition was driven by the loss of sulfur atoms at elevated temperatures, resulting in increased free energy. A decrease in the ratio of the (001) plane led to an overall increase in surface energy, thus lowering the critical phase transition temperature. Our study provides detailed insight into the mechanism of structural transformation and the critical factors governing transition temperature, thus paving the way for future studies on intriguing Cr-S compounds.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA