Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Ann Bot ; 125(1): 59-65, 2020 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-31402377

RESUMEN

BACKGROUND AND AIMS: Pendulous flowers (due to a flexible pedicel) are a common, convergent trait of hummingbird-pollinated flowers. However, the role of flexible pedicels remains uncertain despite several functional hypotheses. Here we present and test the 'lever action hypothesis': flexible pedicels allow pendulous flowers to move upwards from all sides, pushing the stigma and anthers against the underside of the feeding hummingbird regardless of which nectary is being visited. METHODS: To test whether this lever action increased pollination success, we wired emasculated flowers of serpentine columbine, Aquilegia eximia, to prevent levering and compared pollination success of immobilized flowers with emasculated unwired and wire controls. KEY RESULTS: Seed set was significantly lower in wire-immobilized flowers than unwired control and wire control flowers. Video analysis of visits to wire-immobilized and unwired flowers demonstrated that birds contacted the stigmas and anthers of immobilized flowers less often than those of flowers with flexible pedicels. CONCLUSIONS: We conclude that flexible pedicels permit the levering of reproductive structures onto a hovering bird. Hummingbirds, as uniquely large, hovering pollinators, differ from flies or bees which are too small to cause levering of flowers while hovering. Thus, flexible pedicels may be an adaptation to hummingbird pollination, in particular due to hummingbird size. We further speculate that this mechanism is effective only in radially symmetric flowers; in contrast, zygomorphic hummingbird-pollinated flowers are usually more or less horizontally oriented rather than having pendulous flowers and flexible pedicels.


Asunto(s)
Aquilegia , Animales , Abejas , Aves , Flores , Polinización , Reproducción
2.
Ecology ; 100(10): e02809, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31282988

RESUMEN

Seed mucilage, a coating on seeds or fruit that becomes slimy and sticky when wet, has evolved convergently many times across plants. One common consequence of having seed mucilage is that sand and dirt particles stick to wet seeds and remain tightly bound to the seed surface after the mucilage dries. Here, we test the hypothesis that a mucilage-bound sand coating protects the seed from seed predators; either as a physical barrier or by reducing apparency of the seed (i.e., camouflage). We experimentally manipulated the sand coating on seeds of 53 plant species of 13 families and assayed the defensive benefit of the sand coating in feeding "depots" near harvester ant nests in California's Central Valley. Consistent with a defensive function, sand coating reduced ant predation on seeds in 48 of the 53 species examined. To test whether this striking benefit was due to reduced apparency, we conducted an addition experiment using flax seeds in which we factorially manipulated the color of both the background substrate and the sand coating, creating visually apparent and unapparent seeds. Our results did not support the reduced apparency hypothesis; seeds coated in background-matched sand were removed at the same rate as seeds coated in unmatched sand. The defensive benefit of a sand coating was not well-predicted by seed mass, entrapped sand mass, or sand mass scaled by seed mass. Together, our results demonstrate that seed mucilage is a phylogenetically widespread and effective seed defensive trait and point to the physical barrier, not reduced apparency, as a mechanism.


Asunto(s)
Hormigas , Animales , California , Plantas , Arena , Semillas
3.
Ecology ; 96(11): 2862-9, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27070006

RESUMEN

Many plants provide predatory arthropods with food or shelter. Glandular trichomes entrap insects and may provision predators with insect carrion, though it has not been clear whether this putative benefit functions with natural amounts of carrion, whether plants actively attract insect "tourists," and how common this provisioning system is. We tested the hypothesis that a sticky columbine (Aquilegia eximia: Ranunculaceae) attracts passerby arthropods (a siren song leading them to their demise); that these entrapped arthropods increased predators on the plant; and that these predators reduced damage to the plant. Sticky traps baited with columbine peduncles entrapped more arthropod carrion than unbaited control traps. Predator abundance correlated positively with carrion abundance observationally, and experimental removal of carrion reduced predator numbers. Experimental removal of carrion also increased damage to reproductive structures, likely due to reductions in predator numbers. This indirect defense may be common; we compiled a list of insect-trapping sticky plants that includes over 110 genera in 49 families, suggesting a widespread convergence of this trait, even in non-carnivorous plants. The ubiquity of this trait combined with these experiments suggest that carrion entrapment should be viewed as a common and active process mediated by the plant for indirect defense.


Asunto(s)
Aquilegia/fisiología , Insectos/fisiología , Animales , Conducta Predatoria
4.
Oecologia ; 174(3): 921-30, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24241642

RESUMEN

Trichomes on leaves and stems of certain chenopods (Chenopodiaceae) are modified with a greatly enlarged apical cell (a salt bladder), containing a huge central vacuole. These structures may aid in the extreme salt tolerance of many species by concentrating salts in the vacuole. Bladders eventually burst, covering the leaf in residue of bladder membranes and solid precipitates. The presence of this system in non-halophytic species suggests additional functions. I tested the novel hypothesis that these bladders have a defensive function against insect herbivores using choice, no choice, and field tests. Generalist insect herbivores preferred to feed on leaves without salt bladders in choice tests. In no choice tests, herbivores consumed less leaf matter with bladders. In a field test, leaves from which I had removed bladders suffered greater herbivory than adjacent leaves with bladders. Solutions containing bladders added to otherwise preferred leaves deterred herbivores, suggesting a water-soluble chemical component to the defense. This bladder system has a defensive function in at least four genera of chenopods. Salt bladders may be a structural defense, like spines or domatia, but also have a chemical defense component.


Asunto(s)
Chenopodiaceae/fisiología , Escarabajos , Herbivoria , Mariposas Nocturnas , Cloruro de Sodio , Animales , Chenopodiaceae/química , Conducta de Elección , Hojas de la Planta/metabolismo , Tallos de la Planta , Tolerancia a la Sal , Sales (Química) , Cloruro de Sodio/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA