Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
PLoS Pathog ; 17(10): e1009992, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34662348

RESUMEN

Many invasive bacterial diseases are caused by organisms that are ordinarily harmless components of the human microbiome. Effective interventions against these microbes require an understanding of the processes whereby symbiotic or commensal relationships transition into pathology. Here, we describe bacterial genome-wide association studies (GWAS) of Neisseria meningitidis, a common commensal of the human respiratory tract that is nevertheless a leading cause of meningitis and sepsis. An initial GWAS discovered bacterial genetic variants, including single nucleotide polymorphisms (SNPs), associated with invasive meningococcal disease (IMD) versus carriage in several loci across the meningococcal genome, encoding antigens and other extracellular components, confirming the polygenic nature of the invasive phenotype. In particular, there was a significant peak of association around the fHbp locus, encoding factor H binding protein (fHbp), which promotes bacterial immune evasion of human complement by recruiting complement factor H (CFH) to the meningococcal surface. The association around fHbp with IMD was confirmed by a validation GWAS, and we found that the SNPs identified in the validation affected the 5' region of fHbp mRNA, altering secondary RNA structures, thereby increasing fHbp expression and enhancing bacterial escape from complement-mediated killing. This finding is consistent with the known link between complement deficiencies and CFH variation with human susceptibility to IMD. These observations demonstrate the importance of human and bacterial genetic variation across the fHbp:CFH interface in determining IMD susceptibility, the transition from carriage to disease.


Asunto(s)
Antígenos Bacterianos/genética , Proteínas Bacterianas/genética , Infecciones Meningocócicas/genética , Neisseria meningitidis/genética , Neisseria meningitidis/patogenicidad , Estudio de Asociación del Genoma Completo , Humanos , Polimorfismo de Nucleótido Simple
2.
J Bacteriol ; 201(20)2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31331980

RESUMEN

Neisseria meningitidis expresses multicomponent organelles called type four pili (Tfp), which are key virulence factors required for attachment to human cells during carriage and disease. Pilin (PilE) is the main component of Tfp, and N. meningitidis isolates either have a class I pilE locus and express pilins that undergo antigenic variation or have a class II pilE locus and express invariant pilins. The transcriptional regulation of class I pilE has been studied in both N. meningitidis and Neisseria gonorrhoeae, while the control of expression of class II pilE has been elucidated in the nonpathogenic species Neisseria elongata However, the factors that govern the regulation of the class II pilE gene in N. meningitidis are not known. In this work, we have bioinformatically and experimentally identified the class II pilE promoter. We confirmed the presence of conserved σ70 and σN-dependent promoters upstream of pilE in a collection of meningococcal genomes and demonstrated that class II pilE expression initiates from the σ70 family-dependent promoter. By deletion or overexpression of sigma factors, we showed that σN, σH, and σE do not affect class II pilin expression. These findings are consistent with a role of the housekeeping σD in expression of this important component of Tfp. Taken together, our data indicate that the σ-dependent network responsible for the expression of class II pilE has been selected to maintain pilE expression, consistent with the essential roles of Tfp in colonization and pathogenesis.IMPORTANCE The type four pilus (Tfp) of Neisseria meningitidis contributes to fundamental processes such as adhesion, transformation, and disease pathology. Meningococci express one of two distinct classes of Tfp (class I or class II), which can be distinguished antigenically or by the major subunit (pilE) locus and its genetic context. The factors that govern transcription of the class II pilE gene are not known, even though it is present in isolates that cause epidemic disease. Here we show that the transcription of class II pilE is maintained throughout growth and under different stress conditions and is driven by a σ70-dependent promoter. This is distinct from Tfp regulation in nonpathogenic Neisseria spp. and may confer an advantage during host-cell interaction and infection.


Asunto(s)
ARN Polimerasas Dirigidas por ADN/metabolismo , Proteínas Fimbrias/genética , Neisseria meningitidis/crecimiento & desarrollo , Factor sigma/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Fimbrias/metabolismo , Regulación Bacteriana de la Expresión Génica , Humanos , Neisseria meningitidis/genética , Neisseria meningitidis/metabolismo , Regiones Promotoras Genéticas , Transcripción Genética
3.
Yale J Biol Med ; 90(1): 135-145, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28356901

RESUMEN

Undoubtedly, the discovery of penicillin is one of the greatest milestones in modern medicine. 2016 marks the 75th anniversary of the first systemic administration of penicillin in humans, and is therefore an occasion to reflect upon the extraordinary impact that penicillin has had on the lives of millions of people since. This perspective presents a historical account of the discovery of the wonder drug, describes the biological nature of penicillin, and considers lessons that can be learned from the golden era of antibiotic research, which took place between the 1940s and 1960s. Looking back at the history of penicillin might help us to relive this journey to find new treatments and antimicrobial agents. This is particularly relevant today as the emergence of multiple drug resistant bacteria poses a global threat, and joint efforts are needed to combat the rise and spread of resistance.


Asunto(s)
Antibacterianos/farmacología , Penicilinas/farmacología , Antiinfecciosos/farmacología , Farmacorresistencia Microbiana , Farmacorresistencia Bacteriana Múltiple , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA