Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Intervalo de año de publicación
1.
Brief Bioinform ; 25(2)2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38493292

RESUMEN

Computational predictors of immunogenic peptides, or epitopes, are traditionally built based on data from a broad range of pathogens without consideration for taxonomic information. While this approach may be reasonable if one aims to develop one-size-fits-all models, it may be counterproductive if the proteins for which the model is expected to generalize are known to come from a specific subset of phylogenetically related pathogens. There is mounting evidence that, for these cases, taxon-specific models can outperform generalist ones, even when trained with substantially smaller amounts of data. In this comment, we provide some perspective on the current state of taxon-specific modelling for the prediction of linear B-cell epitopes, and the challenges faced when building and deploying these predictors.


Asunto(s)
Péptidos , Proteínas , Secuencia de Aminoácidos , Epítopos de Linfocito B
2.
PLoS One ; 16(11): e0258637, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34727117

RESUMEN

Peptide-based vaccines have demonstrated to be an important way to induce long-lived immune responses and, therefore, a promising strategy in the rational of vaccine development. As to malaria, among the classic vaccine targets, the Apical membrane antigen (AMA-1) was proven to have important B cell epitopes that can induce specific immune response and, hence, became key players for a vaccine approach. The peptides selection was carried out using a bioinformatic approach based on Hidden Markov Models profiles of known antigens and propensity scale methods based on hydrophilicity and secondary structure prediction. The antigenicity of the selected B-cell peptides was assessed by multiple serological assays using sera from acute P.vivax infected subjects. The synthetic peptides were recognized by 45.5%, 48.7% and 32.2% of infected subjects for peptides I, II and III respectively. Moreover, when synthetized together (tripeptide), the reactivity increases up to 62%, which is comparable to the reactivity found against the whole protein PvAMA-1 (57%). Furthermore, IgG reactivity against the tripeptide after depletion was reduced by 42%, indicating that these epitopes may be responsible for a considerable part of the protein immunogenicity. These results represent an excellent perspective regarding future chimeric vaccine constructions that may come to contemplate several targets with the potential to generate the robust and protective immune response that a vivax malaria vaccine needs to succeed.


Asunto(s)
Antígenos de Protozoos/inmunología , Epítopos de Linfocito B/inmunología , Vacunas contra la Malaria/inmunología , Proteínas de la Membrana/inmunología , Péptidos/inmunología , Plasmodium vivax/inmunología , Proteínas Protozoarias/inmunología , Adulto , Secuencia de Aminoácidos , Formación de Anticuerpos/inmunología , Estudios de Casos y Controles , Femenino , Humanos , Epítopos Inmunodominantes/inmunología , Inmunoglobulina G/inmunología , Malaria Vivax/epidemiología , Malaria Vivax/inmunología , Masculino , Persona de Mediana Edad , Péptidos/química , Estructura Secundaria de Proteína
3.
Environ Int ; 146: 106234, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33181412

RESUMEN

In nature, arsenic (As) and iron (Fe) biotransformation are interconnected, influencing local As mobility and toxicity. While As- or Fe-metabolizing microorganisms are widely documented, knowledge concerning their cycling genes, associated with geophysicochemical data and taxonomic distribution, remains scarce. We performed a meta-analysis to explore the distribution and environmental importance of As- and Fe-redox genes (AsRGs and FeRGs) and predict their significant correlations and hosts. The most abundant and ubiquitous AsRGs and FeRGs were arsC and ccoN, respectively. The ccoN gene had the highest frequency at pH ≥ 9.1, in which dissolved Fe(II) is scarce, possibly contributing to enhanced host survival. Fe(III) oxidation genes iro and ccoN appear to be associated with As(V) detoxification in mesophilic environments. No correlation was observed between Fe(III) reduction gene omcB and arsenate reductase genes. Cytochromes with putative roles in Fe-redox reactions were identified (including yceJ and fbcH) and were significantly correlated with As(V) reduction genes under diverse geophysicochemical conditions. The taxonomies of AsRGs and FeRGs-carrying contigs revealed great diversity, among which various, such as Chlamydea (arsC) and Firmicutes (omcB), were previously undescribed. Nearly all (98.9%) of the AsRGs and FeRGs were not carried by any plasmid sequences. This meta-analysis expands our understanding of the global environmental, taxonomic and functional microbiome involved in As- and Fe-redox transformations. Moreover, these findings should help guide studies on putative in vivo functional roles of cytochromes in Fe-redox pathways.


Asunto(s)
Arsénico , Microbiota , Arsénico/toxicidad , Biotransformación , Hierro , Oxidación-Reducción
4.
Sci Rep ; 8(1): 2210, 2018 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-29396532

RESUMEN

Byrsonima is the third largest genus (about 200 species) in the Malpighiaceae family, and one of the most common in Brazilian savannas. However, there is no molecular phylogeny available for the genus and taxonomic uncertainties at the generic and family level still remain. Herein, we sequenced the complete chloroplast genome of B. coccolobifolia and B. crassifolia, the first ones described for Malpighiaceae, and performed comparative analyses with sequences previously published for other families in the order Malpighiales. The chloroplast genomes assembled had a similar structure, gene content and organization, even when compared with species from other families. Chloroplast genomes ranged between 160,212 bp in B. crassifolia and 160,329 bp in B. coccolobifolia, both containing 115 genes (four ribosomal RNA genes, 28 tRNA genes and 83 protein-coding genes). We also identified sequences with high divergence that might be informative for phylogenetic inferences in the Malpighiales order, Malpighiaceae family and within the genus Byrsonima. The phylogenetic reconstruction of Malpighiales with these regions highlighted their utility for phylogenetic studies. The comparative analyses among species in Malpighiales provided insights into the chloroplast genome evolution in this order, including the presence/absence of three genes (infA, rpl32 and rps16) and two pseudogenes (ycf1 and rps19).


Asunto(s)
Variación Genética , Genoma del Cloroplasto , Malpighiaceae/clasificación , Malpighiaceae/genética , Filogenia , Brasil , Orden Génico , Genes del Cloroplasto , Sintenía
5.
Sci Rep ; 6: 36339, 2016 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-27805018

RESUMEN

Targeting regions of proteins that show a high degree of structural conservation has been proposed as a method of developing immunotherapies and vaccines that may bypass the wide genetic variability of RNA viruses. Despite several attempts, a vaccine that protects evenly against the four circulating Dengue virus (DV) serotypes remains elusive. To find critical conserved amino acids in dengue viruses, 120 complete genomes of each serotype were selected at random and used to calculate conservation scores for nucleotide and amino acid sequences. The identified peptide sequences were analysed for their structural conservation and localisation using crystallographic data. The longest, surface exposed, highly conserved peptide of Envelope protein was found to correspond to amino acid residues 250 to 270. Mutation of this peptide in DV1 was lethal, since no replication of the mutant virus was detected in human cells. Antibodies against this peptide were detected in DV naturally infected patients indicating its potential antigenicity. Hence, this study has identified a highly conserved, critical peptide in DV that is a target of antibodies in infected humans.


Asunto(s)
Virus del Dengue/genética , Virus del Dengue/inmunología , Dengue/inmunología , Péptidos/inmunología , Proteínas del Envoltorio Viral/genética , Secuencia de Aminoácidos , Anticuerpos Antivirales/metabolismo , Secuencia de Bases , Secuencia Conservada , Cristalografía por Rayos X , Dengue/virología , Genoma Viral , Humanos , Modelos Moleculares , Mutación , Péptidos/química , Péptidos/genética , Conformación Proteica , Serogrupo , Proteínas del Envoltorio Viral/química , Proteínas del Envoltorio Viral/inmunología
6.
BMC Genomics ; 16: 567, 2015 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-26231214

RESUMEN

BACKGROUND: Detection of genes evolving under positive Darwinian evolution in genome-scale data is nowadays a prevailing strategy in comparative genomics studies to identify genes potentially involved in adaptation processes. Despite the large number of studies aiming to detect and contextualize such gene sets, there is virtually no software available to perform this task in a general, automatic, large-scale and reliable manner. This certainly occurs due to the computational challenges involved in this task, such as the appropriate modeling of data under analysis, the computation time to perform several of the required steps when dealing with genome-scale data and the highly error-prone nature of the sequence and alignment data structures needed for genome-wide positive selection detection. RESULTS: We present POTION, an open source, modular and end-to-end software for genome-scale detection of positive Darwinian selection in groups of homologous coding sequences. Our software represents a key step towards genome-scale, automated detection of positive selection, from predicted coding sequences and their homology relationships to high-quality groups of positively selected genes. POTION reduces false positives through several sophisticated sequence and group filters based on numeric, phylogenetic, quality and conservation criteria to remove spurious data and through multiple hypothesis corrections, and considerably reduces computation time thanks to a parallelized design. Our software achieved a high classification performance when used to evaluate a curated dataset of Trypanosoma brucei paralogs previously surveyed for positive selection. When used to analyze predicted groups of homologous genes of 19 strains of Mycobacterium tuberculosis as a case study we demonstrated the filters implemented in POTION to remove sources of errors that commonly inflate errors in positive selection detection. A thorough literature review found no other software similar to POTION in terms of customization, scale and automation. CONCLUSION: To the best of our knowledge, POTION is the first tool to allow users to construct and check hypotheses regarding the occurrence of site-based evidence of positive selection in non-curated, genome-scale data within a feasible time frame and with no human intervention after initial configuration. POTION is available at http://www.lmb.cnptia.embrapa.br/share/POTION/.


Asunto(s)
Evolución Molecular , Sistemas de Lectura Abierta/genética , Filogenia , Selección Genética/genética , Biología Computacional , Genoma Humano , Humanos , Homología de Secuencia
7.
Genome Announc ; 2(1)2014 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-24435867

RESUMEN

The draft genome sequence of the yeast Spathaspora arborariae UFMG-HM19.1A(T) (CBS 11463 = NRRL Y-48658) is presented here. The sequenced genome size is 12.7 Mb, consisting of 41 scaffolds containing a total of 5,625 predicted open reading frames, including many genes encoding enzymes and transporters involved in d-xylose fermentation.

8.
Nucleic Acids Res ; 40(Web Server issue): W491-7, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22675073

RESUMEN

The enrichment analysis is a standard procedure to interpret 'omics' experiments that generate large gene lists as outputs, such as transcriptomics and protemics. However, despite the huge success of enrichment analysis in these classes of experiments, there is a surprising lack of application of this methodology to survey other categories of large-scale biological data available. Here, we report Kegg Orthology enrichMent-Online DetectiOn (KOMODO), a web tool to systematically investigate groups of monophyletic genomes in order to detect significantly enriched groups of homologous genes in one taxon when compared with another. The results are displayed in their proper biochemical roles in a visual, explorative way, allowing users to easily formulate and investigate biological hypotheses regarding the taxonomical distribution of genomic elements. We validated KOMODO by analyzing portions of central carbon metabolism in two taxa extensively studied regarding their carbon metabolism profile (Enterobacteriaceae family and Lactobacillales order). Most enzymatic activities significantly biased were related to known key metabolic traits in these taxa, such as the distinct fates of pyruvate (the known tendency of lactate production in Lactobacillales and its complete oxidation in Enterobacteriaceae), demonstrating that KOMODO could detect biologically meaningful differences in the frequencies of shared genomic elements among taxa. KOMODO is freely available at http://komodotool.org.


Asunto(s)
Genes , Filogenia , Programas Informáticos , Ciclo del Ácido Cítrico/genética , Gráficos por Computador , Enterobacteriaceae/clasificación , Enterobacteriaceae/enzimología , Enterobacteriaceae/genética , Genes Bacterianos , Genómica/métodos , Glucólisis/genética , Internet , Lactobacillales/clasificación , Lactobacillales/enzimología , Lactobacillales/genética
9.
PLoS One ; 6(4): e18551, 2011 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-21533164

RESUMEN

BACKGROUND: Corynebacterium pseudotuberculosis, a gram-positive, facultative intracellular pathogen, is the etiologic agent of the disease known as caseous lymphadenitis (CL). CL mainly affects small ruminants, such as goats and sheep; it also causes infections in humans, though rarely. This species is distributed worldwide, but it has the most serious economic impact in Oceania, Africa and South America. Although C. pseudotuberculosis causes major health and productivity problems for livestock, little is known about the molecular basis of its pathogenicity. METHODOLOGY AND FINDINGS: We characterized two C. pseudotuberculosis genomes (Cp1002, isolated from goats; and CpC231, isolated from sheep). Analysis of the predicted genomes showed high similarity in genomic architecture, gene content and genetic order. When C. pseudotuberculosis was compared with other Corynebacterium species, it became evident that this pathogenic species has lost numerous genes, resulting in one of the smallest genomes in the genus. Other differences that could be part of the adaptation to pathogenicity include a lower GC content, of about 52%, and a reduced gene repertoire. The C. pseudotuberculosis genome also includes seven putative pathogenicity islands, which contain several classical virulence factors, including genes for fimbrial subunits, adhesion factors, iron uptake and secreted toxins. Additionally, all of the virulence factors in the islands have characteristics that indicate horizontal transfer. CONCLUSIONS: These particular genome characteristics of C. pseudotuberculosis, as well as its acquired virulence factors in pathogenicity islands, provide evidence of its lifestyle and of the pathogenicity pathways used by this pathogen in the infection process. All genomes cited in this study are available in the NCBI Genbank database (http://www.ncbi.nlm.nih.gov/genbank/) under accession numbers CP001809 and CP001829.


Asunto(s)
Corynebacterium pseudotuberculosis/patogenicidad , Evolución Molecular , Genoma Bacteriano , Virulencia/genética , Corynebacterium pseudotuberculosis/genética
10.
PLoS One ; 4(7): e6282, 2009 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-19617912

RESUMEN

Virus-host biological interaction is a continuous coevolutionary process involving both host immune system and viral escape mechanisms. Flaviviridae family is composed of fast evolving RNA viruses that infects vertebrate (mammals and birds) and/or invertebrate (ticks and mosquitoes) organisms. These host groups are very distinct life forms separated by a long evolutionary time, so lineage-specific anti-viral mechanisms are likely to have evolved. Flaviviridae viruses which infect a single host lineage would be subjected to specific host-induced pressures and, therefore, selected by them. In this work we compare the genomic evolutionary patterns of Flaviviridae viruses and their hosts in an attempt to uncover coevolutionary processes inducing common features in such disparate groups. Especially, we have analyzed dinucleotide and codon usage patterns in the coding regions of vertebrate and invertebrate organisms as well as in Flaviviridae viruses which specifically infect one or both host types. The two host groups posses very distinctive dinucleotide and codon usage patterns. A pronounced CpG under-representation was found in the vertebrate group, possibly induced by the methylation-deamination process, as well as a prominent TpA decrease. The invertebrate group displayed only a TpA frequency reduction bias. Flaviviridae viruses mimicked host nucleotide motif usage in a host-specific manner. Vertebrate-infecting viruses possessed under-representation of CpG and TpA, and insect-only viruses displayed only a TpA under-representation bias. Single-host Flaviviridae members which persistently infect mammals or insect hosts (Hepacivirus and insect-only Flavivirus, respectively) were found to posses a codon usage profile more similar to that of their hosts than to related Flaviviridae. We demonstrated that vertebrates and mosquitoes genomes are under very distinct lineage-specific constraints, and Flaviviridae viruses which specifically infect these lineages appear to be subject to the same evolutionary pressures that shaped their host coding regions, evidencing the lineage-specific coevolutionary processes between the viral and host groups.


Asunto(s)
Evolución Biológica , Flaviviridae/genética , Interacciones Huésped-Patógeno , Animales , Secuencia de Bases , Codón , Vectores de Enfermedades , Flaviviridae/clasificación , Filogenia
11.
BMC Bioinformatics ; 8: 396, 2007 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-17941985

RESUMEN

BACKGROUND: Detecting groups of functionally related proteins from their amino acid sequence alone has been a long-standing challenge in computational genome research. Several clustering approaches, following different strategies, have been published to attack this problem. Today, new sequencing technologies provide huge amounts of sequence data that has to be efficiently clustered with constant or increased accuracy, at increased speed. RESULTS: We advocate that the model of weighted cluster editing, also known as transitive graph projection is well-suited to protein clustering. We present the FORCE heuristic that is based on transitive graph projection and clusters arbitrary sets of objects, given pairwise similarity measures. In particular, we apply FORCE to the problem of protein clustering and show that it outperforms the most popular existing clustering tools (Spectral clustering, TribeMCL, GeneRAGE, Hierarchical clustering, and Affinity Propagation). Furthermore, we show that FORCE is able to handle huge datasets by calculating clusters for all 192 187 prokaryotic protein sequences (66 organisms) obtained from the COG database. Finally, FORCE is integrated into the corynebacterial reference database CoryneRegNet. CONCLUSION: FORCE is an applicable alternative to existing clustering algorithms. Its theoretical foundation, weighted cluster editing, can outperform other clustering paradigms on protein homology clustering. FORCE is open source and implemented in Java. The software, including the source code, the clustering results for COG and CoryneRegNet, and all evaluation datasets are available at http://gi.cebitec.uni-bielefeld.de/comet/force/.


Asunto(s)
Algoritmos , Análisis por Conglomerados , Reconocimiento de Normas Patrones Automatizadas/métodos , Proteínas/química , Alineación de Secuencia/métodos , Análisis de Secuencia de Proteína/métodos , Programas Informáticos , Secuencia de Aminoácidos , Inteligencia Artificial , Datos de Secuencia Molecular
12.
BMC Genomics ; 8: 181, 2007 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-17578584

RESUMEN

BACKGROUND: The parasitic trematode Schistosoma mansoni is one of the major causative agents of Schistosomiasis, a disease that affects approximately 200 million people, mostly in developing countries. Since much of the pathology is associated with eggs laid by the female worm, understanding the mechanisms involved in oogenesis and sexual maturation is an important step towards the discovery of new targets for effective drug therapy. It is known that the adult female worm only develops fully in the presence of a male worm and that the rates of oviposition and maturation of eggs are significantly increased by mating. In order to study gene transcripts associated with sexual maturation and oviposition, we compared the gene expression profiles of sexually mature and immature parasites using DNA microarrays. RESULTS: For each experiment, three amplified RNA microarray hybridizations and their dye swaps were analyzed. Our results show that 265 transcripts are differentially expressed in adult females and 53 in adult males when mature and immature worms are compared. Of the genes differentially expressed, 55% are expressed at higher levels in paired females while the remaining 45% are more expressed in unpaired ones and 56.6% are expressed at higher levels in paired male worms while the remaining 43.4% are more expressed in immature parasites. Real-time RT-PCR analysis validated the microarray results. Several new maturation associated transcripts were identified. Genes that were up-regulated in single-sex females were mostly related to energy generation (i.e. carbohydrate and protein metabolism, generation of precursor metabolites and energy, cellular catabolism, and organelle organization and biogenesis) while genes that were down-regulated related to RNA metabolism, reactive oxygen species metabolism, electron transport, organelle organization and biogenesis and protein biosynthesis. CONCLUSION: Our results confirm previous observations related to gene expression induced by sexual maturation in female schistosome worms. They also increase the list of S. mansoni maturation associated transcripts considerably, therefore opening new and exciting avenues for the study of the conjugal biology and development of new drugs against schistosomes.


Asunto(s)
Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Schistosoma mansoni/genética , Conducta Sexual Animal , Animales , Clonación Molecular , ADN Complementario , Femenino , Genes de Helminto , Masculino , Modelos Genéticos , Hibridación de Ácido Nucleico , ARN Mensajero/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
13.
Exp Parasitol ; 116(4): 440-9, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17420016

RESUMEN

The SCF (Skp1-Cul1-F-box) complex is one of the several E3 ligase enzymes and it catalyzes protein ubiquitination and degradation by the 26S proteasome. Rbx1 is a member of the SCF complex in humans and HRT1 is its yeast orthologue. A cDNA encoding a Schistosoma mansoni Rbx1 homolog was cloned and functionally characterized. Heterologous functional complementation in yeast showed that the worm SmRbx gene was able to complement the HRT1yeast null mutation. Gene deletion constructs for N- and C-termini truncated proteins were used to transform hrt1(-) yeast mutant strains, allowing us to observe that regions reported to be involved in the interaction with cullin1 (Cul1) were essential for SmRbx function. Yeast two-hybrid assays using SmRbx and yeast Cul1 confirmed that SmRbx, but not the mutant SmRbxDelta24N, lacking the N-terminus of the protein, was capable of interacting with Cul1. These results suggest that SmRbx protein is involved in the SCF complex formation.


Asunto(s)
Proteínas del Helminto/genética , Schistosoma mansoni/genética , Ubiquitina/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Proteínas Portadoras/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Cullin/genética , Proteínas Cullin/metabolismo , ADN Complementario/química , ADN de Helmintos/química , Etiquetas de Secuencia Expresada , Femenino , Prueba de Complementación Genética , Vectores Genéticos , Proteínas del Helminto/química , Humanos , Masculino , Datos de Secuencia Molecular , Mutación , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteínas Ligasas SKP Cullina F-box , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Schistosoma mansoni/metabolismo
14.
Mem. Inst. Oswaldo Cruz ; 101(supl.1): 323-326, Oct. 2006. graf, ilus
Artículo en Inglés | LILACS | ID: lil-441267

RESUMEN

In a previous study, the Schistosoma mansoni Rho1 protein was able to complement Rho1 null mutant Saccharomyces cerevisiae cells at restrictive temperatures and under osmotic stress (low calcium concentration) better than the human homologue (RhoA). It is known that under osmotic stress, the S. cerevisiae Rho1 triggers two distinct pathways: activation of the membrane 1,3-beta-glucan synthase enzymatic complex and activation of the protein kinase C1 signal transduction pathway, promoting the transcription of response genes. In the present work the SmRho1 protein and its mutants smrho1E97P, smrho1L101T, and smrho1E97P, L101T were used to try to clarify the basis for the differential complementation of Rho1 knockout yeast strain by the human and S. mansoni genes. Experiments of functional complementation in the presence of caffeine and in the presence of the osmotic regulator sorbitol were conducted. SmRho1 and its mutants showed a differential complementation of the yeast cells in the presence of caffeine, since smrho1E97P and smrho1E97P, L101T mutants showed a delay in the growth when compared to the yeast complemented with the wild type SmRho1. However, in the presence of sorbitol and caffeine the wild type SmRho1 and mutants showed a similar complementation phenotype, as they allowed yeast growth in all caffeine concentrations tested.


Asunto(s)
Animales , Humanos , Cafeína/farmacología , Proteína Quinasa C/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Schistosoma mansoni/genética , Proteínas de Unión al GTP rho/genética , Genes de Helminto , Mutación , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/metabolismo , Schistosoma mansoni/metabolismo , Transducción de Señal/genética , Proteínas de Unión al GTP rho/metabolismo
15.
Mem Inst Oswaldo Cruz ; 101 Suppl 1: 323-6, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17308790

RESUMEN

In a previous study, the Schistosoma mansoni Rho1 protein was able to complement Rho1 null mutant Saccharomyces cerevisiae cells at restrictive temperatures and under osmotic stress (low calcium concentration) better than the human homologue (RhoA). It is known that under osmotic stress, the S. cerevisiae Rho1 triggers two distinct pathways: activation of the membrane 1,3-beta-glucan synthase enzymatic complex and activation of the protein kinase C1 signal transduction pathway, promoting the transcription of response genes. In the present work the SmRho1 protein and its mutants smrho1E97P, smrho1L101T, and smrho1E97P, L101T were used to try to clarify the basis for the differential complementation of Rho1 knockout yeast strain by the human and S. mansoni genes. Experiments of functional complementation in the presence of caffeine and in the presence of the osmotic regulator sorbitol were conducted. SmRho1 and its mutants showed a differential complementation of the yeast cells in the presence of caffeine, since smrho1E97P and smrho1E97P, L101T mutants showed a delay in the growth when compared to the yeast complemented with the wild type SmRho1. However, in the presence of sorbitol and caffeine the wild type SmRho1 and mutants showed a similar complementation phenotype, as they allowed yeast growth in all caffeine concentrations tested.


Asunto(s)
Cafeína/farmacología , Proteína Quinasa C/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Schistosoma mansoni/genética , Proteínas de Unión al GTP rho/genética , Animales , Genes de Helminto , Humanos , Mutación , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Schistosoma mansoni/metabolismo , Transducción de Señal/genética , Proteínas de Unión al GTP rho/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...