Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 17 de 17
1.
Biochem Pharmacol ; : 116186, 2024 Mar 30.
Article En | MEDLINE | ID: mdl-38561092

Ischemic stroke is one of the leading causes of death and disability. Occlusion and reperfusion of cerebral blood vessels (i.e., ischemia/reperfusion (I/R) injury) generates reactive oxygen species (ROS) that contribute to brain cell death and dysfunction of the blood-brain barrier (BBB) via oxidative stress. BBB disruption influences the pathogenesis of ischemic stroke by contributing to cerebral edema, hemorrhagic transformation, and extravasation of circulating neurotoxic proteins. An improved understanding of mechanisms for ROS-associated alterations in BBB function during ischemia/reperfusion (I/R) injury can lead to improved treatment paradigms for ischemic stroke. Unfortunately, progress in developing ROS targeted therapeutics that are effective for stroke treatment has been slow. Here, we review how ROS are produced in response to I/R injury, their effects on BBB integrity (i.e., tight junction protein complexes, transporters), and the utilization of antioxidant treatments in ischemic stroke clinical trials. Overall, knowledge in this area provides a strong translational framework for discovery of novel drugs for stroke and/or improved strategies to mitigate I/R injury in stroke patients.

2.
Stroke ; 54(11): 2875-2885, 2023 11.
Article En | MEDLINE | ID: mdl-37750296

BACKGROUND: Drug discovery for stroke is challenging as indicated by poor clinical translatability. In contrast, HMG-CoA (3-hydroxy-3-methylglutaryl coenzyme A) reductase inhibitors (ie, statins) improve poststroke neurological outcomes. This property requires transport across the blood-brain barrier via an endogenous uptake transporter (ie, Oatp1a4 [organic anion transporting polypeptide 1a4]). Our goal was to study Oatp1a4 as a drug delivery mechanism because the blood-brain barrier cannot be assumed to be completely open for all drugs in ischemic stroke. METHODS: Male Sprague-Dawley rats (200-250 g) were subjected to middle cerebral artery occlusion (90 minutes) followed by reperfusion for up to 7 days. Atorvastatin (20 mg/kg, IV) was administered 2 hours following intraluminal suture removal. Involvement of Oatp-mediated transport was determined using fexofenadine (3.2 mg/kg, IV), a competitive Oatp inhibitor. Oatp1a4 transport activity was measured by in situ brain perfusion. Infarction volumes/brain edema ratios and neuronal nuclei expression were determined using 2,3,5-triphenyltetrazolium chloride-stained brain tissue slices and confocal microscopy, respectively. Poststroke functional outcomes were assessed via neurological deficit scores and rotarod analysis. RESULTS: At 2-hour post-middle cerebral artery occlusion, [3H]atorvastatin uptake was increased in ischemic brain tissue. A single dose of atorvastatin significantly reduced post-middle cerebral artery occlusion infarction volume, decreased brain edema ratio, increased caudoputamen neuronal nuclei expression, and improved functional neurological outcomes. All middle cerebral artery occlusion positive effects of atorvastatin were attenuated by fexofenadine coadministration (ie, an Oatp transport inhibitor). CONCLUSIONS: Our data demonstrate that neuroprotective effects of atorvastatin may require central nervous system delivery by Oatp-mediated transport at the blood-brain barrier, a mechanism that persists despite increased cerebrovascular permeability in ischemic stroke. These novel and translational findings support utility of blood-brain barrier transporters in drug delivery for neuroprotective agents.


Brain Edema , Ischemic Stroke , Neuroprotective Agents , Organic Anion Transporters , Stroke , Rats , Animals , Male , Atorvastatin/pharmacology , Rats, Sprague-Dawley , Neuroprotection , Infarction, Middle Cerebral Artery/drug therapy , Stroke/drug therapy , Neuroprotective Agents/pharmacology , Organic Anion Transporters/metabolism
3.
Cells ; 12(4)2023 02 17.
Article En | MEDLINE | ID: mdl-36831312

The neurovascular unit (NVU) is an anatomical group of cells that establishes the blood-brain barrier (BBB) and coordinates cerebral blood flow in association with neuronal function. In cerebral gray matter, cellular constituents of the NVU include endothelial cells and associated pericytes, astrocytes, neurons, and microglia. Dysfunction of the NVU is a common feature of diseases that affect the CNS, such as ischemic stroke. High-level evaluation of these NVU changes requires the use of imaging modalities that can enable the visualization of various cell types under disease conditions. In this study, we applied our confocal microscopy strategy using commercially available labeling reagents to, for the first time, simultaneously investigate associations between endothelial cells, the vascular basal lamina, pericytes, microglia, astrocytes and/or astrocyte end-feet, and neurites in both healthy and ischemic brain tissue. This allowed us to demonstrate ischemia-induced astrocyte activation, neurite loss, and microglial migration toward blood vessels in a single confocal image. Furthermore, our labeling cocktail enabled a precise quantification of changes in neurites and astrocyte reactivity, thereby showing the relationship between different NVU cellular constituents in healthy and diseased brain tissue. The application of our imaging approach for the simultaneous visualization of multiple NVU cell types provides an enhanced understanding of NVU function and pathology, a state-of-the-art advancement that will facilitate the development of more effective treatment strategies for diseases of the CNS that exhibit neurovascular dysfunction, such as ischemic stroke.


Ischemic Stroke , Humans , Ischemic Stroke/metabolism , Endothelial Cells/physiology , Brain/pathology , Blood-Brain Barrier/pathology , Astrocytes/metabolism
4.
Drug Metab Dispos ; 50(7): 942-956, 2022 07.
Article En | MEDLINE | ID: mdl-35504656

Our laboratory has shown that activation of transforming growth factor- ß (TGF- ß )/activin receptor-like kinase 1 (ALK1) signaling can increase protein expression and transport activity of organic anion transporting polypeptide 1a4 (Oatp1a4) at the blood-brain barrier (BBB). These results are relevant to treatment of ischemic stroke because Oatp transport substrates such as 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (i.e., statins) improve functional neurologic outcomes in patients. Advancement of our work requires determination if TGF- ß /ALK1 signaling alters Oatp1a4 functional expression differently across brain regions and if such disparities affect central nervous system (CNS) statin disposition. Therefore, we studied regulation of Oatp1a4 by the TGF- ß /ALK1 pathway, in vivo, in rat brain microvessels isolated from cerebral cortex, hippocampus, and cerebellum using the ALK1 agonist bone morphogenetic protein-9 (BMP-9) and the ALK1 inhibitor 4-[6-[4-(1-piperazinyl)phenyl]pyrazolo[1,5-a]pyrimidin-3-yl]quinoline dihydrochloride 193189. We showed that Oatp1a4 protein expression and brain distribution of three currently marketed statin drugs (i.e., atorvastatin, pravastatin, and rosuvastatin) were increased in cortex relative to hippocampus and cerebellum. Additionally, BMP-9 treatment enhanced Oatp-mediated statin transport in cortical tissue but not in hippocampus or cerebellum. Although brain drug delivery is also dependent upon efflux transporters, such as P-glycoprotein and/or Breast Cancer Resistance Protein, our data showed that administration of BMP-9 did not alter the relative contribution of these transporters to CNS disposition of statins. Overall, this study provides evidence for differential regulation of Oatp1a4 by TGF- ß /ALK1 signaling across brain regions, knowledge that is critical for development of therapeutic strategies to target Oatps at the BBB for CNS drug delivery. SIGNIFICANCE STATEMENT: Organic anion transporting polypeptides (Oatps) represent transporter targets for brain drug delivery. We have shown that Oatp1a4 statin uptake is higher in cortex versus hippocampus and cerebellum. Additionally, we report that the transforming growth factor- ß /activin receptor-like kinase 1 agonist bone morphogenetic protein-9 increases Oatp1a4 functional expression, but not efflux transporters P-glycoprotein and Breast Cancer Resistance Protein, in cortical brain microvessels. Overall, this study provides critical data that will advance treatment for neurological diseases where drug development has been challenging.


Enzyme Inhibitors/pharmacology , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Neoplasms , Organic Anion Transporters , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism , Activin Receptors/metabolism , Animals , Blood-Brain Barrier/metabolism , Brain/metabolism , Coenzyme A/metabolism , Growth Differentiation Factor 2/metabolism , Hydroxymethylglutaryl-CoA Reductase Inhibitors/metabolism , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Neoplasm Proteins/metabolism , Neoplasms/metabolism , Organic Anion Transporters/metabolism , Oxidoreductases/metabolism , Rats , Transforming Growth Factor beta/metabolism , Transforming Growth Factors/metabolism
5.
Pharmaceutics ; 14(5)2022 Apr 27.
Article En | MEDLINE | ID: mdl-35631535

The consumption of acetaminophen (APAP) can induce neurological changes in human subjects; however, effects of APAP on blood-brain barrier (BBB) integrity are unknown. BBB changes by APAP can have profound consequences for brain delivery of co-administered drugs. To study APAP effects, female Sprague-Dawley rats (12-16 weeks old) were administered vehicle (i.e., 100% dimethyl sulfoxide (DMSO), intraperitoneally (i.p.)) or APAP (80 mg/kg or 500 mg/kg in DMSO, i.p.; equivalent to a 900 mg or 5600 mg daily dose for a 70 kg human subject). BBB permeability was measured via in situ brain perfusion using [14C]sucrose and [3H]codeine, an opioid analgesic drug that is co-administered with APAP (i.e., Tylenol #3). Localization and protein expression of tight junction proteins (i.e., claudin-5, occludin, ZO-1) were studied in rat brain microvessels using Western blot analysis and confocal microscopy, respectively. Paracellular [14C]sucrose "leak" and brain [3H]codeine accumulation were significantly enhanced in rats treated with 500 mg/kg APAP only. Additionally, claudin-5 localization and protein expression were altered in brain microvessels isolated from rats administered 500 mg/kg APAP. Our novel and translational data show that BBB integrity is altered following a single high APAP dose, results that are relevant to patients abusing or misusing APAP and/or APAP/opioid combination products.

6.
Nat Commun ; 13(1): 1326, 2022 03 14.
Article En | MEDLINE | ID: mdl-35288568

Defective angiogenesis underlies over 50 malignant, ischemic and inflammatory disorders yet long-term therapeutic applications inevitably fail, thus highlighting the need for greater understanding of the vast crosstalk and compensatory mechanisms. Based on proteomic profiling of angiogenic endothelial components, here we report ßIV-spectrin, a non-erythrocytic cytoskeletal protein, as a critical regulator of sprouting angiogenesis. Early loss of endothelial-specific ßIV-spectrin promotes embryonic lethality in mice due to hypervascularization and hemorrhagic defects whereas neonatal depletion yields higher vascular density and tip cell populations in developing retina. During sprouting, ßIV-spectrin expresses in stalk cells to inhibit their tip cell potential by enhancing VEGFR2 turnover in a manner independent of most cell-fate determining mechanisms. Rather, ßIV-spectrin recruits CaMKII to the plasma membrane to directly phosphorylate VEGFR2 at Ser984, a previously undefined phosphoregulatory site that strongly induces VEGFR2 internalization and degradation. These findings support a distinct spectrin-based mechanism of tip-stalk cell specification during vascular development.


Spectrin , Vascular Endothelial Growth Factor A , Animals , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Mice , Neovascularization, Physiologic , Proteomics , Signal Transduction , Spectrin/metabolism , Vascular Endothelial Growth Factor Receptor-2/metabolism
7.
Front Physiol ; 11: 914, 2020.
Article En | MEDLINE | ID: mdl-32848858

The blood-brain barrier (BBB) allows the brain to selectively import nutrients and energy critical to neuronal function while simultaneously excluding neurotoxic substances from the peripheral circulation. In contrast to the highly permeable vasculature present in most organs that reside outside of the central nervous system (CNS), the BBB exhibits a high transendothelial electrical resistance (TEER) along with a low rate of transcytosis and greatly restricted paracellular permeability. The property of low paracellular permeability is controlled by tight junction (TJ) protein complexes that seal the paracellular route between apposing brain microvascular endothelial cells. Although tight junction protein complexes are principal contributors to physical barrier properties, they are not static in nature. Rather, tight junction protein complexes are highly dynamic structures, where expression and/or localization of individual constituent proteins can be modified in response to pathophysiological stressors. These stressors induce modifications to tight junction protein complexes that involve de novo synthesis of new protein or discrete trafficking mechanisms. Such responsiveness of BBB tight junctions to diseases indicates that these protein complexes are critical for maintenance of CNS homeostasis. In fulfillment of this vital role, BBB tight junctions are also a major obstacle to therapeutic drug delivery to the brain. There is an opportunity to overcome this substantial obstacle and optimize neuropharmacology via acquisition of a detailed understanding of BBB tight junction structure, function, and regulation. In this review, we discuss physiological characteristics of tight junction protein complexes and how these properties regulate delivery of therapeutics to the CNS for treatment of neurological diseases. Specifically, we will discuss modulation of tight junction structure, function, and regulation both in the context of disease states and in the setting of pharmacotherapy. In particular, we will highlight how these properties can be potentially manipulated at the molecular level to increase CNS drug levels via paracellular transport to the brain.

8.
Pharmaceutics ; 11(11)2019 Nov 12.
Article En | MEDLINE | ID: mdl-31726721

One of the most challenging aspects of treating disorders of the central nervous system (CNS) is the efficient delivery of drugs to their targets within the brain. Only a small fraction of drugs is able to cross the blood-brain barrier (BBB) under physiological conditions, and this observation has prompted investigation into the routes of administration that may potentially bypass the BBB and deliver drugs directly to the CNS. One such route is the intranasal (IN) route. Increasing evidence has suggested that intranasally-administered drugs are able to bypass the BBB and access the brain through anatomical pathways connecting the nasal cavity to the CNS. Though the exact mechanisms regulating the delivery of therapeutics following IN administration are not fully understood, current evidence suggests that the perineural and perivascular spaces of the olfactory and trigeminal nerves are involved in brain delivery and cerebral perivascular spaces are involved in widespread brain distribution. Here, we review evidence for these delivery and distribution pathways, and we address questions that should be resolved in order to optimize the IN route of administration as a viable strategy to treat CNS disease states.

9.
Sci Rep ; 9(1): 2621, 2019 02 22.
Article En | MEDLINE | ID: mdl-30796294

In the brain, insulin acts as a growth factor, regulates energy homeostasis, and is involved in learning and memory acquisition. Many central nervous system (CNS) diseases are characterized by deficits in insulin signaling. Pre-clinical studies have shown that intranasal insulin is neuroprotective in models of Alzheimer's disease, Parkinson's disease, and traumatic brain injury. Clinical trials have also shown that intranasal insulin elicits beneficial cognitive effects in patients with Alzheimer's disease. It is known that insulin can be detected in the CNS within minutes following intranasal administration. Despite these advances, the anatomical pathways that insulin utilizes to reach the CNS and the cellular CNS targets after intranasal administration are not fully understood. Here, we intranasally administered fluorescently labeled insulin and imaged its localization within the brain and trigeminal nerves. Our data indicates that intranasal insulin can reach cellular CNS targets along extracellular components of the trigeminal nerve. Upon CNS entry, we found insulin significantly increased levels of an activated form of the insulin receptor. These findings suggest that the intranasal route of administration is able to effectively deliver insulin to CNS targets in a biologically active form.


Brain/metabolism , Insulin/administration & dosage , Insulin/metabolism , Trigeminal Nerve/metabolism , Administration, Intranasal , Animals , Brain/blood supply , Female , Fluorescein-5-isothiocyanate/metabolism , Humans , Phosphotyrosine/metabolism , Rats, Sprague-Dawley , Receptor, Insulin/metabolism , Tissue Distribution
10.
J Control Release ; 286: 467-484, 2018 09 28.
Article En | MEDLINE | ID: mdl-30081144

The intranasal route has been hypothesized to circumvent the blood-brain and blood-cerebrospinal fluid barriers, allowing entry into the brain via extracellular pathways along olfactory and trigeminal nerves and the perivascular spaces (PVS) of cerebral blood vessels. We investigated the potential of the intranasal route to non-invasively deliver antibodies to the brain 30 min following administration by characterizing distribution, dose-response, and mechanisms of antibody transport to and within the brain after administering non-targeted radiolabeled or fluorescently-labeled full length immunoglobulin G (IgG) to normal adult female rats. Intranasal [125I]-IgG consistently yielded highest concentrations in the olfactory bulbs, trigeminal nerves, and leptomeningeal blood vessels with their associated PVS. Intranasal delivery also resulted in significantly higher [125I]-IgG concentrations in the CNS than systemic (intra-arterial) delivery for doses producing similar endpoint blood concentrations. Importantly, CNS targeting significantly increased with increasing dose only with intranasal administration, yielding brain concentrations that ranged from the low-to-mid picomolar range with tracer dosing (50 µg) up to the low nanomolar range at higher doses (1 mg and 2.5 mg). Finally, intranasal pre-treatment with a previously identified nasal permeation enhancer, matrix metalloproteinase-9, significantly improved intranasal [125I]-IgG delivery to multiple brain regions and further allowed us to elucidate IgG transport pathways extending from the nasal epithelia into the brain using fluorescence microscopy. The results show that it may be feasible to achieve therapeutic levels of IgG in the CNS, particularly at higher intranasal doses, and clarify the likely cranial nerve and perivascular distribution pathways taken by antibodies to reach the brain from the nasal mucosae.


Brain/metabolism , Immunoglobulin G/administration & dosage , Administration, Intranasal , Animals , Brain/blood supply , Female , Immunoglobulin G/analysis , Immunoglobulin G/blood , Injections, Intra-Arterial , Rats , Rats, Sprague-Dawley , Tissue Distribution , Trigeminal Nerve/metabolism
11.
AAPS J ; 19(4): 910-920, 2017 07.
Article En | MEDLINE | ID: mdl-28353217

A functional blood-brain barrier (BBB) is necessary to maintain central nervous system (CNS) homeostasis. Many diseases affecting the CNS, however, alter the functional integrity of the BBB. It has been shown that various diseases and physiological stressors can impact the BBB's ability to selectively restrict passage of substances from the blood to the brain. Modifications of the BBB's permeability properties can potentially contribute to the pathophysiology of CNS diseases and result in altered brain delivery of therapeutic agents. Hypoxia and/or inflammation are central components of a number of diseases affecting the CNS. A number of studies indicate hypoxia or inflammatory pain increase BBB paracellular permeability, induce changes in the expression and/or localization of tight junction proteins, and affect CNS drug uptake. In this review, we look at what is currently known with regard to BBB disruption following a hypoxic or inflammatory insult in vivo. Potential mechanisms involved in altering tight junction components at the BBB are also discussed. A more detailed understanding of the mediators involved in changing BBB functional integrity in response to hypoxia or inflammatory pain could potentially lead to new treatments for CNS diseases with hypoxic or inflammatory components. Additionally, greater insight into the mechanisms involved in TJ rearrangement at the BBB may lead to novel strategies to pharmacologically increase delivery of drugs to the CNS.


Blood-Brain Barrier , Drug Delivery Systems , Hypoxia/physiopathology , Inflammation/physiopathology , Pain/physiopathology , Tight Junctions/physiology , Animals , Humans , Permeability
12.
Sci Rep ; 6: 31732, 2016 08 25.
Article En | MEDLINE | ID: mdl-27558973

Intranasal administration provides a non-invasive drug delivery route that has been proposed to target macromolecules either to the brain via direct extracellular cranial nerve-associated pathways or to the periphery via absorption into the systemic circulation. Delivering drugs to nasal regions that have lower vascular density and/or permeability may allow more drug to access the extracellular cranial nerve-associated pathways and therefore favor delivery to the brain. However, relative vascular permeabilities of the different nasal mucosal sites have not yet been reported. Here, we determined that the relative capillary permeability to hydrophilic macromolecule tracers is significantly greater in nasal respiratory regions than in olfactory regions. Mean capillary density in the nasal mucosa was also approximately 5-fold higher in nasal respiratory regions than in olfactory regions. Applying capillary pore theory and normalization to our permeability data yielded mean pore diameter estimates ranging from 13-17 nm for the nasal respiratory vasculature compared to <10 nm for the vasculature in olfactory regions. The results suggest lymphatic drainage for CNS immune responses may be favored in olfactory regions due to relatively lower clearance to the bloodstream. Lower blood clearance may also provide a reason to target the olfactory area for drug delivery to the brain.


Drug Delivery Systems , Nasal Mucosa/blood supply , Nasal Mucosa/metabolism , Administration, Intranasal , Animals , Area Under Curve , Capillary Permeability , Diffusion , Female , Hydrodynamics , Lymph Nodes/metabolism , Olfactory Mucosa/metabolism , Optical Imaging , Pharmaceutical Preparations/metabolism , Rats , Rats, Sprague-Dawley , Serum Albumin, Bovine/chemistry , Xanthenes/chemistry
13.
J Cereb Blood Flow Metab ; 35(3): 371-81, 2015 Mar.
Article En | MEDLINE | ID: mdl-25492117

The intranasal administration route is increasingly being used as a noninvasive method to bypass the blood-brain barrier because evidence suggests small fractions of nasally applied macromolecules may reach the brain directly via olfactory and trigeminal nerve components present in the nasal mucosa. Upon reaching the olfactory bulb (olfactory pathway) or brainstem (trigeminal pathway), intranasally delivered macromolecules appear to rapidly distribute within the brains of rodents and primates. The mechanisms responsible for this distribution have yet to be fully characterized. Here, we have used ex vivo fluorescence imaging to show that bulk flow within the perivascular space (PVS) of cerebral blood vessels contributes to the rapid central distribution of fluorescently labeled 3 and 10 kDa dextran tracers after intranasal administration in anesthetized adult rats. Comparison of tracer plasma levels and fluorescent signal distribution associated with the PVS of surface arteries and internal cerebral vessels showed that the intranasal route results in unique central access to the PVS not observed after matched intravascular dosing in separate animals. Intranasal targeting to the PVS was tracer size dependent and could be regulated by modifying nasal epithelial permeability. These results suggest cerebral perivascular convection likely has a key role in intranasal drug delivery to the brain.


Blood-Brain Barrier/physiology , Brain/blood supply , Fluorescent Dyes/administration & dosage , Administration, Intranasal , Animals , Brain/metabolism , Enzyme-Linked Immunosorbent Assay , Female , Fluorescent Antibody Technique , Matrix Metalloproteinase 9/analysis , Microscopy, Confocal , Optical Imaging , Rats , Rats, Sprague-Dawley
14.
Adv Drug Deliv Rev ; 64(7): 614-28, 2012 May 15.
Article En | MEDLINE | ID: mdl-22119441

Treatment of central nervous system (CNS) diseases is very difficult due to the blood-brain barrier's (BBB) ability to severely restrict entry of all but small, non-polar compounds. Intranasal administration is a non-invasive method of drug delivery which may bypass the BBB to allow therapeutic substances direct access to the CNS. Intranasal delivery of large molecular weight biologics such as proteins, gene vectors, and stem cells is a potentially useful strategy to treat a variety of diseases/disorders of the CNS including stroke, Parkinson's disease, multiple sclerosis, Alzheimer's disease, epilepsy, and psychiatric disorders. Here we give an overview of relevant nasal anatomy and physiology and discuss the pathways and mechanisms likely involved in drug transport from the nasal epithelium to the CNS. Finally we review both pre-clinical and clinical studies involving intranasal delivery of biologics to the CNS.


Biological Products/administration & dosage , Central Nervous System Diseases/drug therapy , Central Nervous System/drug effects , Central Nervous System/metabolism , Drug Delivery Systems/methods , Administration, Intranasal , Animals , Biological Products/metabolism , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/metabolism , Central Nervous System Diseases/metabolism , Drug Delivery Systems/trends , Humans
15.
Am J Physiol Heart Circ Physiol ; 302(3): H582-93, 2012 Feb 01.
Article En | MEDLINE | ID: mdl-22081706

Our laboratory has shown that λ-carrageenan-induced peripheral inflammatory pain (CIP) can alter tight junction (TJ) protein expression and/or assembly leading to changes in blood-brain barrier xenobiotic permeability. However, the role of reactive oxygen species (ROS) and subsequent oxidative stress during CIP is unknown. ROS (i.e., superoxide) are known to cause cellular damage in response to pain/inflammation. Therefore, we examined oxidative stress-associated effects at the blood-brain barrier (BBB) in CIP rats. During CIP, increased staining of nitrosylated proteins was detected in hind paw tissue and enhanced presence of protein adducts containing 3-nitrotyrosine occurred at two molecular weights (i.e., 85 and 44 kDa) in brain microvessels. Tempol, a pharmacological ROS scavenger, attenuated formation of 3-nitrotyrosine-containing proteins in both the hind paw and in brain microvessels when administered 10 min before footpad injection of λ-carrageenan. Similarly, CIP increased 4-hydroxynoneal staining in brain microvessels and this effect was reduced by tempol. Brain permeability to [(14)C]sucrose and [(3)H]codeine was increased, and oligomeric assemblies of occludin, a critical TJ protein, were altered after 3 h CIP. Tempol attenuated both [(14)C]sucrose and [(3)H]codeine brain uptake as well as protected occludin oligomers from disruption in CIP animals, suggesting that ROS production/oxidative stress is involved in modulating BBB functional integrity during pain/inflammation. Interestingly, tempol administration reduced codeine analgesia in CIP animals, indicating that oxidative stress during pain/inflammation may affect opioid delivery to the brain and subsequent efficacy. Taken together, our data show for the first time that ROS pharmacological scavenging is a viable approach for maintaining BBB integrity and controlling central nervous system drug delivery during acute inflammatory pain.


Blood-Brain Barrier , Capillary Permeability/drug effects , Cyclic N-Oxides/pharmacology , Membrane Proteins/metabolism , Neuralgia , Xenobiotics/pharmacokinetics , Acute Disease , Aldehydes/pharmacokinetics , Analgesics, Opioid/pharmacokinetics , Animals , Antioxidants/pharmacology , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/immunology , Blood-Brain Barrier/metabolism , Capillary Permeability/immunology , Carbon Radioisotopes , Codeine/pharmacokinetics , Cysteine Proteinase Inhibitors/pharmacokinetics , Hyperalgesia/drug therapy , Hyperalgesia/immunology , Hyperalgesia/metabolism , Male , Membrane Proteins/immunology , Neuralgia/drug therapy , Neuralgia/immunology , Neuralgia/metabolism , Neuritis/drug therapy , Neuritis/immunology , Neuritis/metabolism , Occludin , Oxidative Stress/immunology , Rats , Rats, Sprague-Dawley , Spin Labels , Sucrose/pharmacokinetics , Tight Junctions/drug effects , Tight Junctions/immunology , Tight Junctions/metabolism , Tyrosine/analogs & derivatives , Tyrosine/metabolism
16.
J Cereb Blood Flow Metab ; 30(9): 1625-36, 2010 Sep.
Article En | MEDLINE | ID: mdl-20234382

The blood-brain barrier (BBB) has a critical role in central nervous system homeostasis. Intercellular tight junction (TJ) protein complexes of the brain microvasculature limit paracellular diffusion of substances from the blood into the brain. Hypoxia and reoxygenation (HR) is a central component to numerous disease states and pathologic conditions. We have previously shown that HR can influence the permeability of the BBB as well as the critical TJ protein occludin. During HR, free radicals are produced, which may lead to oxidative stress. Using the free radical scavenger tempol (200 mg/kg, intraperitoneal), we show that oxidative stress produced during HR (6% O(2) for 1 h, followed by room air for 20 min) mediates an increase in BBB permeability in vivo using in situ brain perfusion. We also show that these changes are associated with alterations in the structure and localization of occludin. Our data indicate that oxidative stress is associated with movement of occludin away from the TJ. Furthermore, subcellular fractionation of cerebral microvessels reveals alterations in occludin oligomeric assemblies in TJ associated with plasma membrane lipid rafts. Our data suggest that pharmacological inhibition of disease states with an HR component may help preserve BBB functional integrity.


Blood-Brain Barrier/physiology , Hypoxia, Brain/metabolism , Membrane Proteins/metabolism , Oxidative Stress/physiology , Animals , Blotting, Western , Capillaries/metabolism , Capillaries/physiology , Centrifugation, Density Gradient , Cerebrovascular Circulation/physiology , Cyclic N-Oxides/pharmacology , Electrophoresis, Polyacrylamide Gel , Female , Fluorescent Antibody Technique , Free Radical Scavengers/pharmacology , HSP70 Heat-Shock Proteins/biosynthesis , Hypoxia, Brain/pathology , Hypoxia-Inducible Factor 1, alpha Subunit/biosynthesis , Indicators and Reagents , Microscopy, Confocal , Occludin , Permeability , Rats , Rats, Sprague-Dawley , Spin Labels , Translocation, Genetic
17.
J Neurochem ; 110(1): 58-71, 2009 Jul.
Article En | MEDLINE | ID: mdl-19457074

Hypoxic (low oxygen) and reperfusion (post-hypoxic reoxygenation) phases of stroke promote an increase in microvascular permeability at tight junctions (TJs) of the blood-brain barrier (BBB) that may lead to cerebral edema. To investigate the effect of hypoxia (Hx) and reoxygenation on oligomeric assemblies of the transmembrane TJ protein occludin, rats were subjected to either normoxia (Nx, 21% O(2), 60 min), Hx (6% O(2), 60 min), or hypoxia/reoxygenation (H/R, 6% O(2), 60 min followed by 21% O(2), 10 min). After treatment, cerebral microvessels were isolated, fractionated by detergent-free density gradient centrifugation, and occludin oligomeric assemblies associated with plasma membrane lipid rafts were solubilized by perfluoro-octanoic acid (PFO) exclusively as high molecular weight protein complexes. Analysis by non-reducing and reducing sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis/western blot of PFO-solubilized occludin revealed that occludin oligomeric assemblies co-localizing with 'TJ-associated' raft domains contained a high molecular weight 'structural core' that was resistant to disassembly by either SDS or a hydrophilic reducing agent ex vivo, and by Hx and H/R conditions in vivo. However, exposure of PFO-solubilized occludin oligomeric assemblies to SDS ex vivo revealed the non-covalent association of a significant amount of dimeric and monomeric occludin isoforms to the disulfide-bonded inner core, and dispersal of these non-covalently attached occludin subunits to lipid rafts of higher density in vivo was differentially promoted by Hx and H/R. Our data suggest a model of isoform interaction within occludin oligomeric assemblies at the BBB that enables occludin to simultaneously perform a structural role in inhibiting paracellular diffusion, and a signaling role involving interactions of dimeric and monomeric occludin isoforms with a variety of regulatory molecules within different plasma membrane lipid raft domains.


Blood-Brain Barrier/metabolism , Brain Edema/metabolism , Hypoxia, Brain/metabolism , Membrane Proteins/metabolism , Reperfusion Injury/metabolism , Tight Junctions/metabolism , Animals , Blood-Brain Barrier/pathology , Blood-Brain Barrier/physiopathology , Blotting, Western , Brain Edema/pathology , Brain Edema/physiopathology , Cerebral Arteries/chemistry , Cerebral Arteries/metabolism , Cerebral Arteries/ultrastructure , Diffusion , Electrophoresis, Polyacrylamide Gel , Female , Hypoxia, Brain/pathology , Hypoxia, Brain/physiopathology , Membrane Microdomains/chemistry , Membrane Microdomains/metabolism , Membrane Microdomains/ultrastructure , Membrane Proteins/analysis , Membrane Proteins/chemistry , Models, Molecular , Occludin , Protein Multimerization/physiology , Protein Subunits/chemistry , Protein Subunits/metabolism , Rats , Rats, Sprague-Dawley , Reperfusion Injury/pathology , Reperfusion Injury/physiopathology , Stress, Physiological/physiology , Subcellular Fractions/metabolism , Tight Junctions/chemistry , Tight Junctions/pathology
...