Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 23
1.
J Chem Theory Comput ; 2024 Jun 06.
Article En | MEDLINE | ID: mdl-38842599

We model the autoionization of water by determining the free energy of hydration of the major intermediate species of water ions. We represent the smallest ions─the hydroxide ion OH-, the hydronium ion H3O+, and the Zundel ion H5O2+─by bonded models and the more extended ionic structures by strong nonbonded interactions (e.g., the Eigen H9O4+ = H3O+ + 3(H2O) and the Stoyanov H13O6+ = H5O2+ + 4(H2O)). Our models are faithful to the precise QM energies and their components to within 1% or less. Using the calculated free energies and atomization energies, we compute the pKa of pure water from first principles as a consistency check and arrive at a value within 1.3 log units of the experimental one. From these calculations, we conclude that the hydronium ion, and its hydrated state, the Eigen cation, are the dominant species in the water autoionization process.

2.
JAMA Neurol ; 2024 Mar 11.
Article En | MEDLINE | ID: mdl-38466277

Importance: Biomarkers distinguishing nonrelapsing progressive disease biology from relapsing biology in multiple sclerosis (MS) are lacking. Cerebrospinal fluid (CSF) is an accessible fluid that most closely reflects central nervous system biology. Objective: To identify CSF biological measures associated with progressive MS pathobiology. Design, Setting, and Participants: This cohort study assessed data from 2 prospective MS cohorts: a test cohort provided serial CSF, clinical, and imaging assessments in a multicenter study of patients with relapsing MS (RMS) or primary progressive MS (PPMS) who were initiating anti-CD20 treatment (recruitment: 2016-2018; analysis: 2020-2023). A single-site confirmation cohort was used to assess CSF at baseline and long-term (>10 year) clinical follow-up (analysis: 2022-2023). Exposures: Test-cohort participants initiated standard-of-care ocrelizumab treatment. Confirmation-cohort participants were untreated or received standard-of-care disease-modifying MS therapies. Main Outcomes and Measures: Twenty-five CSF markers, including neurofilament light chain, neurofilament heavy chain, and glial fibrillary acid protein (GFAP); 24-week confirmed disability progression (CDP24); and brain magnetic resonance imaging measures reflecting focal injury, tissue loss, and progressive biology (slowly expanding lesions [SELs]). Results: The test cohort (n = 131) included 100 patients with RMS (mean [SD] age, 36.6 [10.4] years; 68 [68%] female and 32 [32%] male; Expanded Disability Status Scale [EDSS] score, 0-5.5), and 31 patients with PPMS (mean [SD] age, 44.9 [7.4] years; 15 [48%] female and 16 [52%] male; EDSS score, 3.0-6.5). The confirmation cohort (n = 68) included 41 patients with RMS and 27 with PPMS enrolled at diagnosis (age, 40 years [range, 20-61 years]; 47 [69%] female and 21 [31%] male). In the test cohort, GFAP was correlated with SEL count (r = 0.33), greater proportion of T2 lesion volume from SELs (r = 0.24), and lower T1-weighted intensity within SELs (r = -0.33) but not with acute inflammatory measures. Neurofilament heavy chain was correlated with SEL count (r = 0.25) and lower T1-weighted intensity within SELs (r = -0.28). Immune markers correlated with measures of acute inflammation and, unlike GFAP, were impacted by anti-CD20. In the confirmation cohort, higher baseline CSF GFAP levels were associated with long-term CDP24 (hazard ratio, 2.1; 95% CI, 1.3-3.4; P = .002). Conclusions and Relevance: In this study, activated glial markers (in particular GFAP) and neurofilament heavy chain were associated specifically with nonrelapsing progressive disease outcomes (independent of acute inflammatory activity). Elevated CSF GFAP was associated with long-term MS disease progression.

3.
J Phys Chem A ; 128(4): 807-812, 2024 Feb 01.
Article En | MEDLINE | ID: mdl-38232765

We present a formalism of a neural network encoding bonded interactions in molecules. This intramolecular encoding is consistent with the models of intermolecular interactions previously designed by this group. Variants of the encoding fed into a corresponding neural network may be used to economically improve the representation of torsional degrees of freedom in any force field. We test the accuracy of the reproduction of the ab initio potential energy surface on a set of conformations of two dipeptides, methyl-capped ALA and ASP, in several scenarios. The encoding, either alone or in conjunction with an analytical potential, improves agreement with ab initio energies that are on par with those of other neural network-based potentials. Using the encoding and neural nets in tandem with an analytical model places the agreements firmly within "chemical accuracy" of ±0.5 kcal/mol.


Dipeptides , Neural Networks, Computer , Molecular Conformation
4.
J Chem Theory Comput ; 20(3): 1347-1357, 2024 Feb 13.
Article En | MEDLINE | ID: mdl-38240485

We incorporate nuclear quantum effects (NQE) in condensed matter simulations by introducing short-range neural network (NN) corrections to the ab initio fitted molecular force field ARROW. Force field NN corrections are fitted to average interaction energies and forces of molecular dimers, which are simulated using the Path Integral Molecular Dynamics (PIMD) technique with restrained centroid positions. The NN-corrected force field allows reproduction of the NQE for computed liquid water and methane properties such as density, radial distribution function (RDF), heat of evaporation (HVAP), and solvation free energy. Accounting for NQE through molecular force field corrections circumvents the need for explicit computationally expensive PIMD simulations in accurate calculations of the properties of chemical and biological systems. The accuracy and locality of pairwise NN NQE corrections indicate that this approach could be applicable to complex heterogeneous systems, such as proteins.

5.
Neurology ; 102(1): e207965, 2024 Jan 09.
Article En | MEDLINE | ID: mdl-38165361

BACKGROUND AND OBJECTIVES: Neuromyelitis optica spectrum disorder (NMOSD) is a chronic CNS demyelinating autoimmune disorder targeting the astrocyte antigen aquaporin-4 (AQP4), typically presenting with optic neuritis, transverse myelitis, and brain syndromes. Cognitive dysfunction (CD) in NMOSD is under-recognized and poorly understood. The purpose of this study was to evaluate the prevalence and clinical variables associated with CD in NMOSD. METHODS: This observational retrospective study with longitudinal follow-up describes a clinical cohort seen in the Collaborative International Research in Clinical and Longitudinal Experience Study in NMOSD. Serial Montreal Cognitive Assessments (MoCAs) were performed upon enrollment and at 6-month intervals to evaluate longitudinal cognitive function relative to demographic and disease-related factors. We used 2-tailed t test, analysis of variance, the χ2 test, linear regression for univariable and adjusted analyses and simultaneous linear regression and mixed-effects model for multivariable analyses. RESULTS: Thirty-four percent (75/219) of patients met criteria for CD (MoCA <26); 29% (64/219) showed mild dysfunction (MoCA 20-26/30), and 5% (11/219) showed moderate (MoCA <20/30) dysfunction. Patients with less neurologic disability and lower pain scores had higher MoCA scores (95% CI 0.24-0.65 and 95% CI 0.09-0.42, respectively). Patients with at least high school education scored higher on the MoCA (95% CI 2.2-5). When comparing patients dichotomized for CD, patients never on rituximab scored higher than patients only treated with rituximab (p < 0.029). There was no significant association between annualized relapse rate, age, sex, disease duration, AQP4 serostatus or brain lesions, and CD. CD was more pronounced among Black than White patients (95% CI -2.7 to -0.7). Multivariable analysis of serial MoCA did not indicate change (p = 0.715). Descriptive analysis of serial MoCA showed 30% (45/150) of patients with worsening MoCA performance had impaired language and verbal recall. DISCUSSION: To our knowledge, this is the largest study of diverse cohort to investigate CD in patients with NMOSD. Our findings demonstrate 34% of patients with NMOSD experience mild-to-moderate CD, while 30% of patients demonstrated decline on serial testing. The substantial prevalence of CD in this pilot report highlights the need for improved and validated screening tools and comprehensive measures to investigate CD in NMOSD.


Cognitive Dysfunction , Neuromyelitis Optica , Humans , Neuromyelitis Optica/complications , Neuromyelitis Optica/epidemiology , Prevalence , Retrospective Studies , Rituximab , Neoplasm Recurrence, Local , Cognitive Dysfunction/epidemiology , Aquaporin 4
6.
J Am Chem Soc ; 145(43): 23620-23629, 2023 Nov 01.
Article En | MEDLINE | ID: mdl-37856313

A key goal of molecular modeling is the accurate reproduction of the true quantum mechanical potential energy of arbitrary molecular ensembles with a tractable classical approximation. The challenges are that analytical expressions found in general purpose force fields struggle to faithfully represent the intermolecular quantum potential energy surface at close distances and in strong interaction regimes; that the more accurate neural network approximations do not capture crucial physics concepts, e.g., nonadditive inductive contributions and application of electric fields; and that the ultra-accurate narrowly targeted models have difficulty generalizing to the entire chemical space. We therefore designed a hybrid wide-coverage intermolecular interaction model consisting of an analytically polarizable force field combined with a short-range neural network correction for the total intermolecular interaction energy. Here, we describe the methodology and apply the model to accurately determine the properties of water, the free energy of solvation of neutral and charged molecules, and the binding free energy of ligands to proteins. The correction is subtyped for distinct chemical species to match the underlying force field, to segment and reduce the amount of quantum training data, and to increase accuracy and computational speed. For the systems considered, the hybrid ab initio parametrized Hamiltonian reproduces the two-body dimer quantum mechanics (QM) energies to within 0.03 kcal/mol and the nonadditive many-molecule contributions to within 2%. Simulations of molecular systems using this interaction model run at speeds of several nanoseconds per day.

8.
Proc Natl Acad Sci U S A ; 120(3): e2207291120, 2023 01 17.
Article En | MEDLINE | ID: mdl-36634138

A small proportion of multiple sclerosis (MS) patients develop new disease activity soon after starting anti-CD20 therapy. This activity does not recur with further dosing, possibly reflecting deeper depletion of CD20-expressing cells with repeat infusions. We assessed cellular immune profiles and their association with transient disease activity following anti-CD20 initiation as a window into relapsing disease biology. Peripheral blood mononuclear cells from independent discovery and validation cohorts of MS patients initiating ocrelizumab were assessed for phenotypic and functional profiles using multiparametric flow cytometry. Pretreatment CD20-expressing T cells, especially CD20dimCD8+ T cells with a highly inflammatory and central nervous system (CNS)-homing phenotype, were significantly inversely correlated with pretreatment MRI gadolinium-lesion counts, and also predictive of early disease activity observed after anti-CD20 initiation. Direct removal of pretreatment proinflammatory CD20dimCD8+ T cells had a greater contribution to treatment-associated changes in the CD8+ T cell pool than was the case for CD4+ T cells. Early disease activity following anti-CD20 initiation was not associated with reconstituting CD20dimCD8+ T cells, which were less proinflammatory compared with pretreatment. Similarly, this disease activity did not correlate with early reconstituting B cells, which were predominantly transitional CD19+CD24highCD38high with a more anti-inflammatory profile. We provide insights into the mode-of-action of anti-CD20 and highlight a potential role for CD20dimCD8+ T cells in MS relapse biology; their strong inverse correlation with both pretreatment and early posttreatment disease activity suggests that CD20-expressing CD8+ T cells leaving the circulation (possibly to the CNS) play a particularly early role in the immune cascades involved in relapse development.


CD8-Positive T-Lymphocytes , Multiple Sclerosis , Humans , Leukocytes, Mononuclear , Flow Cytometry , Recurrence , Antigens, CD20
9.
J Chem Theory Comput ; 18(12): 7751-7763, 2022 Dec 13.
Article En | MEDLINE | ID: mdl-36459593

Protein-ligand binding free-energy calculations using molecular dynamics (MD) simulations have emerged as a powerful tool for in silico drug design. Here, we present results obtained with the ARROW force field (FF)─a multipolar polarizable and physics-based model with all parameters fitted entirely to high-level ab initio quantum mechanical (QM) calculations. ARROW has already proven its ability to determine solvation free energy of arbitrary neutral compounds with unprecedented accuracy. The ARROW FF parameterization is now extended to include coverage of all amino acids including charged groups, allowing molecular simulations of a series of protein-ligand systems and prediction of their relative binding free energies. We ensure adequate sampling by applying a novel technique that is based on coupling the Hamiltonian Replica exchange (HREX) with a conformation reservoir generated via potential softening and nonequilibrium MD. ARROW provides predictions with near chemical accuracy (mean absolute error of ∼0.5 kcal/mol) for two of the three protein systems studied here (MCL1 and Thrombin). The third protein system (CDK2) reveals the difficulty in accurately describing dimer interaction energies involving polar and charged species. Overall, for all of the three protein systems studied here, ARROW FF predicts relative binding free energies of ligands with a similar accuracy level as leading nonpolarizable force fields.


Molecular Dynamics Simulation , Proteins , Ligands , Protein Binding , Entropy , Molecular Conformation , Proteins/chemistry , Thermodynamics
10.
Nature ; 603(7900): 321-327, 2022 03.
Article En | MEDLINE | ID: mdl-35073561

Multiple sclerosis (MS) is a heterogenous autoimmune disease in which autoreactive lymphocytes attack the myelin sheath of the central nervous system. B lymphocytes in the cerebrospinal fluid (CSF) of patients with MS contribute to inflammation and secrete oligoclonal immunoglobulins1,2. Epstein-Barr virus (EBV) infection has been epidemiologically linked to MS, but its pathological role remains unclear3. Here we demonstrate high-affinity molecular mimicry between the EBV transcription factor EBV nuclear antigen 1 (EBNA1) and the central nervous system protein glial cell adhesion molecule (GlialCAM) and provide structural and in vivo functional evidence for its relevance. A cross-reactive CSF-derived antibody was initially identified by single-cell sequencing of the paired-chain B cell repertoire of MS blood and CSF, followed by protein microarray-based testing of recombinantly expressed CSF-derived antibodies against MS-associated viruses. Sequence analysis, affinity measurements and the crystal structure of the EBNA1-peptide epitope in complex with the autoreactive Fab fragment enabled tracking of the development of the naive EBNA1-restricted antibody to a mature EBNA1-GlialCAM cross-reactive antibody. Molecular mimicry is facilitated by a post-translational modification of GlialCAM. EBNA1 immunization exacerbates disease in a mouse model of MS, and anti-EBNA1 and anti-GlialCAM antibodies are prevalent in patients with MS. Our results provide a mechanistic link for the association between MS and EBV and could guide the development of new MS therapies.


Epstein-Barr Virus Infections , Multiple Sclerosis , Animals , B-Lymphocytes , Cell Adhesion Molecules, Neuron-Glia , Epstein-Barr Virus Nuclear Antigens , Herpesvirus 4, Human , Humans , Mice , Nerve Tissue Proteins
11.
J Agric Food Chem ; 69(44): 13200-13216, 2021 Nov 10.
Article En | MEDLINE | ID: mdl-34709825

Nontarget data acquisition for target analysis (nDATA) workflows using liquid chromatography-high-resolution accurate mass (LC-HRAM) spectrometry, spectral screening software, and a compound database have generated interest because of their potential for screening of pesticides in foods. However, these procedures and particularly the instrument processing software need to be thoroughly evaluated before implementation in routine analysis. In this work, 25 laboratories participated in a collaborative study to evaluate an nDATA workflow on high moisture produce (apple, banana, broccoli, carrot, grape, lettuce, orange, potato, strawberry, and tomato). Samples were extracted in each laboratory by quick, easy, cheap, effective, rugged, and safe (QuEChERS), and data were acquired by ultrahigh-performance liquid chromatography (UHPLC) coupled to a high-resolution quadrupole Orbitrap (QOrbitrap) or quadrupole time-of-flight (QTOF) mass spectrometer operating in full-scan mass spectrometry (MS) data-independent tandem mass spectrometry (LC-FS MS/DIA MS/MS) acquisition mode. The nDATA workflow was evaluated using a restricted compound database with 51 pesticides and vendor processing software. Pesticide identifications were determined by retention time (tR, ±0.5 min relative to the reference retention times used in the compound database) and mass errors (δM) of the precursor (RTP, δM ≤ ±5 ppm) and product ions (RTPI, δM ≤ ±10 ppm). The elution profiles of all 51 pesticides were within ±0.5 min among 24 of the participating laboratories. Successful screening was determined by false positive and false negative rates of <5% in unfortified (pesticide-free) and fortified (10 and 100 µg/kg) produce matrices. Pesticide responses were dependent on the pesticide, matrix, and instrument. The false negative rates were 0.7 and 0.1% at 10 and 100 µg/kg, respectively, and the false positive rate was 1.1% from results of the participating LC-HRAM platforms. Further evaluation was achieved by providing produce samples spiked with pesticides at concentrations blinded to the laboratories. Twenty-two of the 25 laboratories were successful in identifying all fortified pesticides (0-7 pesticides ranging from 5 to 50 µg/kg) for each produce sample (99.7% detection rate). These studies provide convincing evidence that the nDATA comprehensive approach broadens the screening capabilities of pesticide analyses and provide a platform with the potential to be easily extended to a larger number of other chemical residues and contaminants in foods.


Pesticide Residues , Pesticides , Chromatography, High Pressure Liquid , Chromatography, Liquid , Food Contamination/analysis , Fruit/chemistry , Pesticide Residues/analysis , Pesticides/analysis , Tandem Mass Spectrometry , Vegetables , Workflow
12.
Food Sci Nutr ; 9(5): 2658-2667, 2021 May.
Article En | MEDLINE | ID: mdl-34026079

Samples of 23 seafood products were obtained internationally in processing plants and subjected to controlled decomposition to produce seven discrete quality increments. A sensory expert evaluated each sample for decomposition, using a scale of 1-100. Samples were then extracted and analyzed by liquid chromatography with high-resolution mass spectrometry (LC-HRMS). Untargeted data processing was performed, and a sensory-driven Random Forest model in the R programming language for each product was created. Five samples of each quality increment were analyzed in duplicate on separate days. Scores analogous to those obtained through sensory analysis were calculated by this approach, and these were compared to the original sensory findings. Correlation values (r) were calculated from these plots and ranged from 0.971 to 0.999. The finding of decomposition state of each sample was consistent with sensory for 548 of 550 test samples (99.6%). Of the two misidentified samples, one was a false negative, and one false positive (0.2% each). One additional sample from each of the 1st, 4th, and 7th increments of each product was extracted and analyzed on a third separate day to evaluate reproducibility. The range of these triplicate calculated scores was 15 or less for all samples tested, 10 or less for 63 of the 69 triplicate tests (91%), and five or less for 41 (59%). From the models, the most predictive compounds of interest were selected, and many of these were identified using MS2 data with standard or database comparison, allowing identification of compounds indicative of decomposition in these products which have not previously been explored for this purpose.

13.
Sci Rep ; 11(1): 5676, 2021 03 11.
Article En | MEDLINE | ID: mdl-33707610

The sequencing, assembly, and analysis of bacterial genomes is central to tracking and characterizing foodborne pathogens. The bulk of bacterial genome sequencing at the US Food and Drug Administration is performed using short-read Illumina MiSeq technology, resulting in highly accurate but fragmented genomic sequences. The MinION sequencer from Oxford Nanopore is an evolving technology that produces long-read sequencing data with low equipment cost. The goal of this study was to compare Campylobacter genome assemblies generated from MiSeq and MinION data independently, as well as hybrid genome assemblies combining both data types. Two reference strains and two field isolates of C. jejuni were sequenced using MiSeq and MinION, and the sequence data were assembled using the software programs SPAdes and Canu, respectively. Hybrid genome assembly was performed using the program Unicycler. Comparison of the C. jejuni 81-176 and RM1221 genome assemblies to the PacBio reference genomes revealed that the SPAdes assemblies had the most accurate nucleotide identity, while the hybrid assemblies were the most contiguous. Assemblies generated only from MinION data using Canu were the least accurate, containing many indels and substitutions that affected downstream analyses. The hybrid sequencing approach was the most useful for detecting plasmids, large genome rearrangements, and repetitive elements such as rRNA and tRNA genes. The full genomes of both C. jejuni field isolates were completed and circularized using hybrid sequencing, and a plasmid was detected in one isolate. Continued development of nanopore sequencing technologies will likely enhance the accuracy of hybrid genome assemblies and enable public health laboratories to routinely generate complete circularized bacterial genome sequences.


Campylobacter jejuni/genetics , Genome, Bacterial , High-Throughput Nucleotide Sequencing , Base Sequence , Campylobacter jejuni/isolation & purification , Molecular Sequence Annotation , Multilocus Sequence Typing , Reference Standards
14.
PLoS One ; 14(7): e0219705, 2019.
Article En | MEDLINE | ID: mdl-31314813

PURPOSE: To develop a 7T simultaneous multi-slice (SMS) 2D gradient-echo sequence for susceptibility contrast imaging, and to compare its quality to 3D imaging. METHODS: A frequency modulated and phase cycled RF pulse was designed to simultaneously excite multiple slices in multi-echo 2D gradient-echo imaging. The imaging parameters were chosen to generate images with susceptibility contrast, including T2*-weighted magnitude/phase images, susceptibility-weighted images and quantitative susceptibility/R2* maps. To compare their image quality with 3D gradient-echo imaging, both 2D and 3D imaging were performed on 11 healthy volunteers and 4 patients with multiple sclerosis (MS). The signal to noise ratio (SNR) in gray and white matter and their contrast to noise ratio (CNR) was simulated for the 2D and 3D magnitude images using parameters from the imaging. The experimental SNRs and CNRs were measured in gray/white matter and deep gray matter structures on magnitude, phase, R2* and QSM images from volunteers and the visibility of MS lesions on these images from patients was visually rated. All SNRs and CNRs were compared between the 2D and 3D imaging using a paired t-test. RESULTS: Although the 3D magnitude images still had significantly higher SNRs (by 13.0~17.6%), the 2D magnitude and QSM images generated significantly higher gray/white matter or globus pallidus/putamen contrast (by 13.3~87.5%) and significantly higher MS lesion contrast (by 5.9~17.3%). CONCLUSION: 2D SMS gradient-echo imaging can serve as an alternative to often used 3D imaging to obtain susceptibility-contrast-weighted images, with an advantage of providing better image contrast and MS lesion sensitivity.


Gray Matter/diagnostic imaging , Image Processing, Computer-Assisted/methods , Imaging, Three-Dimensional/methods , Magnetic Resonance Imaging/methods , White Matter/diagnostic imaging , Adult , Algorithms , Brain Mapping/methods , Contrast Media/pharmacology , Female , Globus Pallidus/diagnostic imaging , Humans , Male , Middle Aged , Putamen/diagnostic imaging , Signal-To-Noise Ratio , Software
15.
Nat Chem Biol ; 12(6): 444-51, 2016 06.
Article En | MEDLINE | ID: mdl-27110679

Usher syndrome type III (USH3), characterized by progressive deafness, variable balance disorder and blindness, is caused by destabilizing mutations in the gene encoding the clarin-1 (CLRN1) protein. Here we report a new strategy to mitigate hearing loss associated with a common USH3 mutation CLRN1(N48K) that involves cell-based high-throughput screening of small molecules capable of stabilizing CLRN1(N48K), followed by a secondary screening to eliminate general proteasome inhibitors, and finally an iterative process to optimize structure-activity relationships. This resulted in the identification of BioFocus 844 (BF844). To test the efficacy of BF844, we developed a mouse model that mimicked the progressive hearing loss associated with USH3. BF844 effectively attenuated progressive hearing loss and prevented deafness in this model. Because the CLRN1(N48K) mutation causes both hearing and vision loss, BF844 could in principle prevent both sensory deficiencies in patients with USH3. Moreover, the strategy described here could help identify drugs for other protein-destabilizing monogenic disorders.


Disease Models, Animal , Membrane Proteins/antagonists & inhibitors , Pyrazoles/pharmacology , Pyridazines/pharmacology , Small Molecule Libraries/chemistry , Small Molecule Libraries/therapeutic use , Usher Syndromes/drug therapy , Animals , High-Throughput Screening Assays , Humans , Membrane Proteins/deficiency , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , Molecular Structure , Pyrazoles/chemical synthesis , Pyrazoles/chemistry , Pyrazoles/therapeutic use , Pyridazines/chemical synthesis , Pyridazines/chemistry , Pyridazines/therapeutic use , Small Molecule Libraries/chemical synthesis , Small Molecule Libraries/pharmacology , Structure-Activity Relationship , Usher Syndromes/genetics
16.
J Exp Med ; 209(7): 1325-34, 2012 Jul 02.
Article En | MEDLINE | ID: mdl-22734047

Comparison of transcriptomic and proteomic data from pathologically similar multiple sclerosis (MS) lesions reveals down-regulation of CD47 at the messenger RNA level and low abundance at the protein level. Immunohistochemical studies demonstrate that CD47 is expressed in normal myelin and in foamy macrophages and reactive astrocytes within active MS lesions. We demonstrate that CD47(-/-) mice are refractory to experimental autoimmune encephalomyelitis (EAE), primarily as the result of failure of immune cell activation after immunization with myelin antigen. In contrast, blocking with a monoclonal antibody against CD47 in mice at the peak of paralysis worsens EAE severity and enhances immune activation in the peripheral immune system. In vitro assays demonstrate that blocking CD47 also promotes phagocytosis of myelin and that this effect is dependent on signal regulatory protein α (SIRP-α). Immune regulation and phagocytosis are mechanisms for CD47 signaling in autoimmune neuroinflammation. Depending on the cell type, location, and disease stage, CD47 has Janus-like roles, with opposing effects on EAE pathogenesis.


Autoimmune Diseases/genetics , CD47 Antigen/genetics , Encephalitis/genetics , Encephalomyelitis, Autoimmune, Experimental/genetics , Animals , Antigen-Presenting Cells/immunology , Antigen-Presenting Cells/metabolism , Astrocytes/immunology , Astrocytes/metabolism , Autoimmune Diseases/immunology , Autoimmune Diseases/metabolism , CD47 Antigen/immunology , CD47 Antigen/metabolism , Disease Resistance/genetics , Disease Resistance/immunology , Down-Regulation , Encephalitis/immunology , Encephalitis/metabolism , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/metabolism , Flow Cytometry , Foam Cells/immunology , Foam Cells/metabolism , Humans , Immunohistochemistry , Mice , Mice, Inbred C57BL , Mice, Knockout , Multiple Sclerosis/genetics , Multiple Sclerosis/metabolism , Myelin Sheath/immunology , Myelin Sheath/metabolism , Oligonucleotide Array Sequence Analysis , Proteomics , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Transcriptome
17.
Int J Surg Case Rep ; 2(2): 13-5, 2011.
Article En | MEDLINE | ID: mdl-22096676

A previously healthy 33 year old lady presented with acute dysphagia with endoscopic and CT features of oesophageal carcinoma. Endoscopic ultrasound (EUS) revealed a large subcarinal lymph node compressing at the mid-oesophagus. Fine-needle aspiration (FNA) showed a single well-formed epithelioid granuloma with no evidence of malignancy. Molecular analysis showed the aspirate to be positive for Mycobacterium tuberculosis. She continues to improve with standard anti-TB medication without surgery.This is a rare case of acute dysphagia secondary to primary tuberculous mediastinal lymphadenopathy. EUS and FNA have completely altered the clinical management of this lady.

18.
J Comput Aided Mol Des ; 25(7): 677-87, 2011 Jul.
Article En | MEDLINE | ID: mdl-21732248

The stress-activated kinase p38α was used to evaluate a fragment-based drug discovery approach using the BioFocus fragment library. Compounds were screened by surface plasmon resonance (SPR) on a Biacore(™) T100 against p38α and two selectivity targets. A sub-set of our library was the focus of detailed follow-up analyses that included hit confirmation, affinity determination on 24 confirmed, selective hits and competition assays of these hits with respect to a known ATP binding site inhibitor. In addition, functional activity against p38α was assessed in a biochemical assay using a mobility shift platform (LC3000, Caliper LifeSciences). A selection of fragments was also evaluated using fluorescence lifetime (FLEXYTE(™)) and microscale thermophoresis (Nanotemper) technologies. A good correlation between the data for the different assays was found. Crystal structures were solved for four of the small molecules complexed to p38α. Interestingly, as determined both by X-ray analysis and SPR competition experiments, three of the complexes involved the fragment at the ATP binding site, while the fourth compound bound in a distal site that may offer potential as a novel drug target site. A first round of optimization around the remotely bound fragment has led to the identification of a series of triazole-containing compounds. This approach could form the basis for developing novel and active p38α inhibitors. More broadly, it illustrates the power of combining a range of biophysical and biochemical techniques to the discovery of fragments that facilitate the development of novel modulators of kinase and other drug targets.


Drug Discovery/methods , Mitogen-Activated Protein Kinase 14/chemistry , Small Molecule Libraries/chemistry , Triazoles/chemistry , Binding Sites , Bridged Bicyclo Compounds/chemistry , Drug Evaluation, Preclinical/methods , Humans , Ligands , Molecular Conformation , Peptide Fragments/chemistry , Protein Binding , Surface Plasmon Resonance/methods , X-Ray Diffraction
19.
Proc Natl Acad Sci U S A ; 107(6): 2580-5, 2010 Feb 09.
Article En | MEDLINE | ID: mdl-20133656

GABA, the principal inhibitory neurotransmitter in the adult brain, has a parallel inhibitory role in the immune system. We demonstrate that immune cells synthesize GABA and have the machinery for GABA catabolism. Antigen-presenting cells (APCs) express functional GABA receptors and respond electrophysiologically to GABA. Thus, the immune system harbors all of the necessary constituents for GABA signaling, and GABA itself may function as a paracrine or autocrine factor. These observations led us to ask further whether manipulation of the GABA pathway influences an animal model of multiple sclerosis, experimental autoimmune encephalomyelitis (EAE). Increasing GABAergic activity ameliorates ongoing paralysis in EAE via inhibition of inflammation. GABAergic agents act directly on APCs, decreasing MAPK signals and diminishing subsequent adaptive inflammatory responses to myelin proteins.


Encephalomyelitis, Autoimmune, Experimental/immunology , Inflammation/immunology , Multiple Sclerosis/immunology , gamma-Aminobutyric Acid/immunology , 4-Aminobutyrate Transaminase/genetics , 4-Aminobutyrate Transaminase/metabolism , Animals , Antigen-Presenting Cells/cytology , Antigen-Presenting Cells/metabolism , Antigen-Presenting Cells/physiology , Blotting, Western , Cells, Cultured , Encephalomyelitis, Autoimmune, Experimental/metabolism , Encephalomyelitis, Autoimmune, Experimental/prevention & control , GABA Agents/pharmacology , GABA Plasma Membrane Transport Proteins/genetics , GABA Plasma Membrane Transport Proteins/metabolism , Inflammation/metabolism , Inflammation/prevention & control , Interferon-gamma/metabolism , Interleukin-17/metabolism , Macrophages/cytology , Macrophages/metabolism , Macrophages/physiology , Membrane Potentials/drug effects , Mice , Mice, Inbred C57BL , Mice, Transgenic , Multiple Sclerosis/metabolism , Myelin Proteins , Myelin-Associated Glycoprotein/immunology , Myelin-Oligodendrocyte Glycoprotein , Patch-Clamp Techniques , Receptors, GABA/genetics , Receptors, GABA/metabolism , Reverse Transcriptase Polymerase Chain Reaction , T-Lymphocytes/drug effects , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , gamma-Aminobutyric Acid/metabolism , gamma-Aminobutyric Acid/pharmacology
...