Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 20
1.
J Biol Chem ; 300(4): 105777, 2024 Apr.
Article En | MEDLINE | ID: mdl-38395308

3-mercaptopropionate (3MPA) dioxygenase (MDO) is a mononuclear nonheme iron enzyme that catalyzes the O2-dependent oxidation of thiol-bearing substrates to yield the corresponding sulfinic acid. MDO is a member of the cysteine dioxygenase family of small molecule thiol dioxygenases and thus shares a conserved sequence of active site residues (Serine-155, Histidine-157, and Tyrosine-159), collectively referred to as the SHY-motif. It has been demonstrated that these amino acids directly interact with the mononuclear Fe-site, influencing steady-state catalysis, catalytic efficiency, O2-binding, and substrate coordination. However, the underlying mechanism by which this is accomplished is poorly understood. Here, pulsed electron paramagnetic resonance spectroscopy [1H Mims electron nuclear double resonance spectroscopy] is applied to validate density functional theory computational models for the MDO Fe-site simultaneously coordinated by substrate and nitric oxide (NO), (3MPA/NO)-MDO. The enhanced resolution provided by electron nuclear double resonance spectroscopy allows for direct observation of Fe-bound substrate conformations and H-bond donation from Tyr159 to the Fe-bound NO ligand. Further inclusion of SHY-motif residues within the validated model reveals a distinct channel restricting movement of the Fe-bound NO-ligand. It has been argued that the iron-nitrosyl emulates the structure of potential Fe(III)-superoxide intermediates within the MDO catalytic cycle. While the merit of this assumption remains unconfirmed, the model reported here offers a framework to evaluate oxygen binding at the substrate-bound Fe-site and possible reaction mechanisms. It also underscores the significance of hydrogen bonding interactions within the enzymatic active site.


Catalytic Domain , Dioxygenases , Models, Molecular , 3-Mercaptopropionic Acid/chemistry , Catalysis , Dioxygenases/chemistry , Dioxygenases/metabolism , Electron Spin Resonance Spectroscopy , Iron/metabolism , Nitric Oxide/metabolism , Oxygen/metabolism , Protein Structure, Tertiary
2.
J Inorg Biochem ; 251: 112439, 2024 02.
Article En | MEDLINE | ID: mdl-38039560

The reduction of the carcinogen chromate has been proposed to lead to three Cr(III)-containing DNA lesions: binary adducts (Cr(III) and DNA), interstrand crosslinks, and ternary adducts (Cr(III) linking DNA to a small molecule or protein). Although the structures of binary adducts have recently been elucidated, the structures of interstrand crosslinks and ternary adducts are not known. Analysis of Cr(III) binding to an oligonucleotide duplex containing a 5'-CG site allows elucidation of the structure of an oxide- or hydroxide-bridged binuclear Cr(III) assembly bridging the two strands of DNA. One Cr(III) is directly coordinated by the N-7 atom of a guanine residue, and the complex straddles the helix to form a hydrogen bond between another guanine residue and a Cr(III)-bound aquo ligand. No involvement of the phosphate backbone was observed. The properties and stability of this Cr-O(H)-Cr-bridged complex differ significantly from those reported for Cr-induced interstrand crosslinks, suggesting that interstrand crosslinks resulting from chromate reduction may be organic in nature.


Chromates , Chromium , Chromium/chemistry , DNA Adducts , DNA Damage , DNA/chemistry , Guanine
4.
Chem Sci ; 14(34): 9167-9174, 2023 Aug 30.
Article En | MEDLINE | ID: mdl-37655023

Reaction of the nitrosylated-iron metallodithiolate ligand, paramagnetic (NO)Fe(N2S2), with [M(CH3CN)n][BF4]2 salts (M = NiII, PdII, and PtII; n = 4 or 6) affords di-radical tri-metallic complexes in a stairstep type arrangement ([FeMFe]2+, M = Ni, Pd, and Pt), with the central group 10 metal held in a MS4 square plane. These isostructural compounds have nearly identical ν(NO) stretching values, isomer shifts, and electrochemical properties, but vary in their magnetic properties. Despite the intramolecular Fe⋯Fe distances of ca. 6 Å, antiferromagnetic coupling is observed between {Fe(NO)}7 units as established by magnetic susceptibility, EPR, and DFT studies. The superexchange interaction through the thiolate sulfur and central metal atoms is on the order of NiII < PdII ≪ PtII with exchange coupling constants (J) of -3, -23, and -124 cm-1, consistent with increased covalency of the M-S bonds (3d < 4d < 5d). This trend is reproduced by DFT calculations with molecular orbital analysis providing insight into the origin of the enhancement in the exchange interaction. Specifically, the magnitude of the exchange interaction correlates surprisingly well with the energy difference between the HOMO and HOMO-1 orbitals of the triplet states, which is reflected in the central metal's contribution to these orbitals. These results demonstrate the ability of sulfur-dense metallodithiolate ligands to engender strong magnetic communication by virtue of their enhanced covalency and polarizability.

5.
J Biol Inorg Chem ; 28(3): 285-299, 2023 04.
Article En | MEDLINE | ID: mdl-36809458

Thiol dioxygenases are a subset of non-heme mononuclear iron oxygenases that catalyze the O2-dependent oxidation of thiol-bearing substrates to yield sulfinic acid products. Cysteine dioxygenase (CDO) and 3-mercaptopropionic acid (3MPA) dioxygenase (MDO) are the most extensively characterized members of this enzyme family. As with many non-heme mononuclear iron oxidase/oxygenases, CDO and MDO exhibit an obligate-ordered addition of organic substrate before dioxygen. As this substrate-gated O2-reactivity extends to the oxygen-surrogate, nitric oxide (NO), EPR spectroscopy has long been used to interrogate the [substrate:NO:enzyme] ternary complex. In principle, these studies can be extrapolated to provide information about transient iron-oxo intermediates produced during catalytic turnover with dioxygen. In this work, we demonstrate that cyanide mimics the native thiol-substrate in ordered-addition experiments with MDO cloned from Azotobacter vinelandii (AvMDO). Following treatment of the catalytically active Fe(II)-AvMDO with excess cyanide, addition of NO yields a low-spin (S = 1/2) (CN/NO)-Fe-complex. Continuous wave and pulsed X-band EPR characterization of this complex produced in wild-type and H157N variant AvMDO reveal multiple nuclear hyperfine features diagnostic of interactions within the first- and outer-coordination sphere of the enzymatic Fe-site. Spectroscopically validated computational models indicate simultaneous coordination of two cyanide ligands replaces the bidentate (thiol and carboxylate) coordination of 3MPA allowing for NO-binding at the catalytically relevant O2-binding site. This promiscuous substrate-gated reactivity of AvMDO with NO provides an instructive counterpoint to the high substrate-specificity exhibited by mammalian CDO for L-cysteine.


Dioxygenases , Nitric Oxide , Animals , Catalytic Domain , Nitric Oxide/chemistry , Cyanides , Dioxygenases/metabolism , Cysteine Dioxygenase/chemistry , Cysteine Dioxygenase/metabolism , Sulfhydryl Compounds/chemistry , Iron , Oxygen/chemistry , Mammals/metabolism
6.
Adv Mater ; 34(45): e2206161, 2022 Nov.
Article En | MEDLINE | ID: mdl-36114614

The development of open-shell organic molecules that magnetically order at room temperature,which can be practically applied, remains a grand challenge in chemistry, physics, and materials science. Despite the exploration of vast chemical space, design paradigms for organic paramagnetic centers generally result in unpaired electron spins that are unstable or isotropic. Here, a high-spin conjugated polymer is demonstrated, which is composed of alternating cyclopentadithiophene and benzo[1,2-c;4,5-c']bis[1,2,5]thiadiazole heterocycles, in which macromolecular structure and topology coalesce to promote the spin center generation and intermolecular exchange coupling. Electron paramagnetic resonance (EPR) spectroscopy is consistent with spatially localized spins, while magnetic susceptibility measurements show clear anisotropic spin ordering and exchange interactions that persist at room temperature. The application of long-range π-correlations for spin center generation promotes remarkable stability. This work offers a fundamentally new approach to the implementation of this long-sought-after physical phenomenon within organic materials and the integration of manifold properties within emerging technologies.

7.
Proc Natl Acad Sci U S A ; 119(25): e2201240119, 2022 Jun 21.
Article En | MEDLINE | ID: mdl-35696567

The synthesis of sulfur-bridged Fe-Ni heterobimetallics was inspired by Nature's strategies to "trick" abundant first row transition metals into enabling 2-electron processes: redox-active ligands (including pendant iron-sulfur clusters) and proximal metals. Our design to have redox-active ligands on each metal, NO on iron and dithiolene on nickel, resulted in the observation of unexpectedly intricate physical properties. The metallodithiolate, (NO)Fe(N2S2), reacts with a labile ligand derivative of [NiII(S2C2Ph2)]0, NiDT, yielding the expected S-bridged neutral adduct, FeNi, containing a doublet {Fe(NO)}7. Good reversibility of two redox events of FeNi led to isolation of reduced and oxidized congeners. Characterization by various spectroscopies and single-crystal X-ray diffraction concluded that reduction of the FeNi parent yielded [FeNi]-, a rare example of a high-spin {Fe(NO)}8, described as linear FeII(NO-). Mössbauer data is diagnostic for the redox change at the {Fe(NO)}7/8 site. Oxidation of FeNi generated the 2[FeNi]+⇌[Fe2Ni2]2+ equilibrium in solution; crystallization yields only the [Fe2Ni2]2+ dimer, isolated as PF6- and BArF- salts. The monomer is a spin-coupled diradical between {Fe(NO)}7 and NiDT+, while dimerization couples the two NiDT+ via a Ni2S2 rhomb. Magnetic susceptibility studies on the dimer found a singlet ground state with a thermally accessible triplet excited state responsible for the magnetism at 300 K (χMT = 0.67 emu·K·mol-1, µeff = 2.31 µB), and detectable by parallel-mode EPR spectroscopy at 20 to 50 K. A theoretical model built on an H4 chain explains this unexpected low energy triplet state arising from a combination of anti- and ferromagnetic coupling of a four-radical molecular conglomerate.

8.
Inorg Chem ; 60(24): 18639-18651, 2021 Dec 20.
Article En | MEDLINE | ID: mdl-34883020

3-Mercaptopropionic acid (3MPA) dioxygenase (MDO) is a non-heme Fe(II)/O2-dependent oxygenase that catalyzes the oxidation of thiol-substrates to yield the corresponding sulfinic acid. Hydrogen-bonding interactions between the Fe-site and a conserved set of three outer-sphere residues (Ser-His-Tyr) play an important catalytic role in the mechanism of this enzyme. Collectively referred to as the SHY-motif, the functional role of these residues remains poorly understood. Here, catalytically inactive Fe(III)-MDO precomplexed with 3MPA was titrated with cyanide to yield a low-spin (S = 1/2) (3MPA/CN)-bound ternary complex (referred to as 1C). UV-visible and electron paramagnetic resonance (EPR) spectroscopy were used to monitor the binding of 3MPA and cyanide. Comparisons of results obtained from SHY-motif variants (H157N and Y159F) were performed to investigate specific H-bonding interactions. For the wild-type enzyme, the binding of 3MPA- and cyanide to the enzymatic Fe-site is selective and results in a homogeneous ternary complex. However, this selectivity is lost for the Y159F variant, suggesting that H-bonding interactions contributed from Tyr159 gate ligand coordination at the Fe-site. Significantly, the g-values for the low-spin ferric site are diagnostic of the directionality of Tyr159 H-bond donation. Computational models coupled with CASSCF/NEVPT2-calculated g-values were used to verify that a major shift in the central g-value (g2) displayed between wild-type and SHY variants could be attributed to the loss of Tyr159 H-bond donation to the Fe-bound cyanide. Applied to native cosubstrate, this H-bond donation provides a means to stabilize Fe-bound dioxygen and potentially explains the attenuated (∼15-fold) rate of catalytic turnover previously reported for MDO SHY-motif variants.


Ferric Compounds
9.
J Biol Chem ; 296: 100492, 2021.
Article En | MEDLINE | ID: mdl-33662397

Thiol dioxygenases are a subset of nonheme iron oxygenases that catalyze the formation of sulfinic acids from sulfhydryl-containing substrates and dioxygen. Among this class, cysteine dioxygenases (CDOs) and 3-mercaptopropionic acid dioxygenases (3MDOs) are the best characterized, and the mode of substrate binding for CDOs is well understood. However, the manner in which 3-mercaptopropionic acid (3MPA) coordinates to the nonheme iron site in 3MDO remains a matter of debate. A model for bidentate 3MPA coordination at the 3MDO Fe-site has been proposed on the basis of computational docking, whereas steady-state kinetics and EPR spectroscopic measurements suggest a thiolate-only coordination of the substrate. To address this gap in knowledge, we determined the structure of Azobacter vinelandii 3MDO (Av3MDO) in complex with the substrate analog and competitive inhibitor, 3-hydroxypropionic acid (3HPA). The structure together with DFT computational modeling demonstrates that 3HPA and 3MPA associate with iron as chelate complexes with the substrate-carboxylate group forming an additional interaction with Arg168 and the thiol bound at the same position as in CDO. A chloride ligand was bound to iron in the coordination site assigned as the O2-binding site. Supporting HYSCORE spectroscopic experiments were performed on the (3MPA/NO)-bound Av3MDO iron nitrosyl (S = 3/2) site. In combination with spectroscopic simulations and optimized DFT models, this work provides an experimentally verified model of the Av3MDO enzyme-substrate complex, effectively resolving a debate in the literature regarding the preferred substrate-binding denticity. These results elegantly explain the observed 3MDO substrate specificity, but leave unanswered questions regarding the mechanism of substrate-gated reactivity with dioxygen.


3-Mercaptopropionic Acid/metabolism , Azotobacter vinelandii/enzymology , Dioxygenases/chemistry , Dioxygenases/metabolism , Iron/chemistry , Iron/metabolism , 3-Mercaptopropionic Acid/chemistry , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Binding Sites , Catalytic Domain , Crystallography, X-Ray/methods , Kinetics , Models, Molecular , Substrate Specificity
10.
Polyhedron ; 2032021 Jul 15.
Article En | MEDLINE | ID: mdl-37034105

An EPR signal for Mn(III) bound to the metal transport protein transferrin has been detected for the first time. The temperature dependence and simulations of the EPR signal are consistent with the Mn(III) centers being six-coordinate in an elongated tetragonal environment. Thus, the incorporation of Mn(III) within the Tf active site does not vastly alter the coordination number or active site geometry relative to native Fe(III)2-Tf. This parallel mode EPR signal for Mn(III)2-Tf could prove valuable for future studies aimed at determining the physiological relevance of Mn(III)2-Tf.

11.
J Inorg Biochem ; 206: 111040, 2020 05.
Article En | MEDLINE | ID: mdl-32088595

Trivalent chromium has been proposed to be transported in vivo from the bloodstream to the tissues via endocytosis by transferrin (Tf), the major iron transport protein in the blood. While both Cr(III) binding and release from Tf have been proposed to be too slow to be physiologically relevant, recent kinetic studies under physiological conditions demonstrate that Cr(III) binding and release are sufficiently fast to occur during the time of the endocytosis cycle (circa 15 min). Consequently, the release of Cr(III) from human and bovine serum Tf has been examined under conditions mimicking an endosome during endocytosis. These studies have also found that Cr(III)2-Tf can exist in multiple conformations giving rise to different spectroscopic properties and different rates of Cr(III) release. Time-dependent spectroscopic studies of the binding and release of Cr(III) from human serum Tf have been used to identify three different conformations of Cr(III)2-Tf. The conformation of Cr(III)2-Tf used in most previous studies forms too slowly to be physiologically relevant and slowly releases Cr(III) in endosomal pH range. The conformation formed between 5 min to 60 min after the addition of Cr(III) to apoTf at pH 7.4 in 25 mM bicarbonate resembles the conformation of Cr(III)2-Tf in its complex with Tf receptor (TfR) and loses Cr(III) rapidly at endosomal pH, although not as fast as the Tf-TfR complex. The significance of these conformations and the potential role of Tf in detoxification of Cr(III) are described.


Chromium/chemistry , Chromium/metabolism , Transferrin/metabolism , Animals , Biological Transport , Cattle , Endocytosis , Humans , Iron/chemistry , Kinetics , Protein Binding , Protein Conformation , Receptors, Transferrin/metabolism , Spectrophotometry , Transferrin/chemistry
12.
J Inorg Biochem ; 205: 110994, 2020 04.
Article En | MEDLINE | ID: mdl-31982812

The Mycobacterium tuberculosis (Mtb) genome encodes 20 different cytochrome P450 enzymes (CYPs), many of which serve essential biosynthetic roles. CYP51B1, the Mtb version of eukaryotic sterol demethylase, remains a potential therapeutic target. The binding of three drug fragments containing nitrogen heterocycles to CYP51B1 is studied here by continuous wave (CW) and pulsed electron paramagnetic resonance (EPR) techniques to determine how each drug fragment binds to the heme active-site. All three drug fragments form a mixture of complexes, some of which retain the axial water ligand from the resting state. Hyperfine sublevel correlation spectroscopy (HYSCORE) and electron-nuclear double resonance spectroscopy (ENDOR) observe protons of the axial water and on the drug fragments that reveal drug binding modes. Binding in CYP51B1 is complicated by the presence of multiple binding modes that coexist in the same solution. These results aid our understanding of CYP-inhibitor interactions and will help guide future inhibitor design.


Anti-Bacterial Agents/chemistry , Bacterial Proteins , Cytochrome P-450 Enzyme Inhibitors/chemistry , Cytochrome P-450 Enzyme System , Mycobacterium tuberculosis/enzymology , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/chemistry , Catalytic Domain , Cytochrome P-450 Enzyme System/chemistry
13.
Chembiochem ; 21(5): 628-631, 2020 03 02.
Article En | MEDLINE | ID: mdl-31472032

Chromium(VI) is a carcinogen and mutagen, and its mechanisms of action are proposed to involve binding of its reduction product, chromium(III), to DNA. The manner in which chromium(III) binds DNA has not been established, particularly at a molecular level. Analysis of oligonucleotide duplex DNAs by NMR, EPR, and IR spectroscopies in the presence of chromium(III) allows the elucidation of the Cr binding site. The metal centers were found to interact exclusively with guanine N7 positions. No evidence of chromium interactions with other bases or backbone phosphates nor of Cr forming intra-strand crosslinks between neighboring guanine residues was observed.


Chromium/chemistry , DNA Adducts/chemistry , Guanine/chemistry , Oligonucleotides/chemistry , Binding Sites , Molecular Structure , Oxidation-Reduction
14.
Dalton Trans ; 48(29): 10881-10891, 2019 Aug 07.
Article En | MEDLINE | ID: mdl-31107487

The efficiency of photocatalytic charge separation is much higher for 7-hydroxycoumarin (7-CN) and 6,7-dihydroxycoumarin (6,7-CN) adsorbed on the surface modified TiO2 where the surface hydroxyl group was replaced by a fluorine atom (F-TiO2) than on TiO2. EPR measurements find 5- and 12-fold increases in free radical yields for 7-CN and 6,7-CN, respectively. DFT calculations for the coumarins on TiO2 and F-TiO2 were performed to investigate these phenomena. The calculations show that when the coumarins act as the H-bond donors, the driving force for photo-induced electron transfer from the dyes to TiO2 is higher, and the dye's excited state mixes strongly with the TiO2 conduction band states. This is attributed to the shorter distance between the coumarins and the surface of TiO2 when the coumarins act as the H-bond donors. These calculations explain why the efficiency of charge separation of the coumarins is much higher on F-TiO2 than on TiO2.

15.
J Inorg Biochem ; 183: 157-164, 2018 06.
Article En | MEDLINE | ID: mdl-29530595

Cytochrome P450 (CYP) monoxygenses utilize heme cofactors to catalyze oxidation reactions. They play a critical role in metabolism of many classes of drugs, are an attractive target for drug development, and mediate several prominent drug interactions. Many substrates and inhibitors alter the spin state of the ferric heme by displacing the heme's axial water ligand in the resting enzyme to yield a five-coordinate iron complex, or they replace the axial water to yield a nitrogen-ligated six-coordinate iron complex, which are traditionally assigned by UV-vis spectroscopy. However, crystal structures and recent pulsed electron paramagnetic resonance (EPR) studies find a few cases where molecules hydrogen bond to the axial water. The water-bridged drug-H2O-heme has UV-vis spectra similar to nitrogen-ligated, six-coordinate complexes, but are closer to "reverse type I" complexes described in older liteature. Here, pulsed and continuous wave (CW) EPR demonstrate that water-bridged complexes are remarkably common among a range of nitrogenous drugs or drug fragments that bind to CYP3A4 or CYP2C9. Principal component analysis reveals a distinct clustering of CW EPR spectral parameters for water-bridged complexes. CW EPR reveals heterogeneous mixtures of ligated states, including multiple directly-coordinated complexes and water-bridged complexes. These results suggest that water-bridged complexes are under-represented in CYP structural databases and can have energies similar to other ligation modes. The data indicates that water-bridged binding modes can be identified and distinguished from directly-coordinated binding by CW EPR.


Cytochrome P-450 Enzyme System/chemistry , Cytochrome P-450 Enzyme System/metabolism , Electron Spin Resonance Spectroscopy/methods , Oxidation-Reduction , Principal Component Analysis
16.
Biol Trace Elem Res ; 181(2): 369-377, 2018 Feb.
Article En | MEDLINE | ID: mdl-28516390

Recently, several studies on the effects of a compound named "chromium malate," with the proposed formula "Cr2malate3·xH2O" where x = 3.5 or 5, on the health of healthy and diabetic rats have appeared. However, the compound is poorly characterized, and knowing the identity of this material could be important in the interpretation of the previous and of future studies on the effects of this compound in animals. Consequently, the synthesis, characterization, and identity of this material were explored. A combination of spectroscopic, magnetic, and elemental analyses and mass spectral studies reveal that the compound is probably a polymer, not a discrete molecule, and does not have the composition previously reported. The repeating unit of the polymer possesses an antiferromagnetically coupled trinuclear Cr(III) core. The current study suggests that previous reports on chromium malate and its effects in animals must be viewed with caution.


Chromium Compounds/analysis , Malates/analysis , Chromium Compounds/chemical synthesis , Malates/chemical synthesis , Spectrometry, Mass, Electrospray Ionization , Spectrophotometry
17.
Inorg Chem ; 56(13): 7519-7532, 2017 Jul 03.
Article En | MEDLINE | ID: mdl-28636344

Metallo prodrugs that take advantage of the inherent acidity surrounding cancer cells have yet to be developed. We report a new class of pH-activated metallo prodrugs (pHAMPs) that are activated by light- and pH-triggered ligand dissociation. These ruthenium complexes take advantage of a key characteristic of cancer cells and hypoxic solid tumors (acidity) that can be exploited to lessen the side effects of chemotherapy. Five ruthenium complexes of the type [(N,N)2Ru(PL)]2+ were synthesized, fully characterized, and tested for cytotoxicity in cell culture (1A: N,N = 2,2'-bipyridine (bipy) and PL, the photolabile ligand, = 6,6'-dihydroxybipyridine (6,6'-dhbp); 2A: N,N = 1,10-phenanthroline (phen) and PL = 6,6'-dhbp; 3A: N,N = 2,3-dihydro-[1,4]dioxino[2,3-f][1,10]phenanthroline (dop) and PL = 6,6'-dhbp; 4A: N,N = bipy and PL = 4,4'-dimethyl-6,6'-dihydroxybipyridine (dmdhbp); 5A: N,N = 1,10-phenanthroline (phen) and PL = 4,4'-dihydroxybipyridine (4,4'-dhbp). The thermodynamic acidity of these complexes was measured in terms of two pKa values for conversion from the acidic form (XA) to the basic form (XB) by removal of two protons. Single-crystal X-ray diffraction data is discussed for 2A, 2B, 3A, 4B, and 5A. All complexes except 5A showed measurable photodissociation with blue light (λ = 450 nm). For complexes 1A-4A and their deprotonated analogues (1B-4B), the protonated form (at pH 5) consistently gave faster rates of photodissociation and larger quantum yields for the photoproduct, [(N,N)2Ru(H2O)2]2+. This shows that low pH can lead to greater rates of photodissociation. Cytotoxicity studies with 1A-5A showed that complex 3A is the most cytotoxic complex of this series with IC50 values as low as 4 µM (with blue light) versus two breast cancer cell lines. Complex 3A is also selectively cytotoxic, with sevenfold higher toxicity toward cancerous versus normal breast cells. Phototoxicity indices with 3A were as high as 120, which shows that dark toxicity is avoided. The key difference between complex 3A and the other complexes tested appears to be higher uptake of the complex as measured by inductively coupled plasma mass spectrometry, and a more hydrophobic complex as compared to 1A, which may enhance uptake. These complexes demonstrate proof of concept for dual activation by both low pH and blue light, thus establishing that a pHAMP approach can be used for selective targeting of cancer cells.


Antineoplastic Agents/pharmacology , Coordination Complexes/pharmacology , Light , Prodrugs/pharmacology , Ruthenium/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Coordination Complexes/chemical synthesis , Coordination Complexes/chemistry , Crystallography, X-Ray , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Hydrogen-Ion Concentration , Models, Molecular , Molecular Structure , Prodrugs/chemical synthesis , Prodrugs/chemistry , Quantum Theory , Ruthenium/chemistry , Structure-Activity Relationship , Tumor Cells, Cultured
18.
Free Radic Biol Med ; 101: 367-377, 2016 12.
Article En | MEDLINE | ID: mdl-27989753

Reaction intermediates trapped during the single-turnover reaction of the neuronal ferrous nitric oxide synthase oxygenase domain (Fe(II)nNOSOX) show four EPR spectra of free radicals. Fully-coupled nNOSOX with cofactor (tetrahydrobiopterin, BH4) and substrate (l-arginine) forms the typical BH4 cation radical with an EPR spectrum ~4.0mT wide and hyperfine tensors similar to reports for a biopterin cation radical in inducible NOSOX (iNOSOX). With excess thiol, nNOSox lacking BH4 and l-arg is known to produce superoxide. In contrast, we find that nNOSOX with BH4 but no l-arg forms two radicals with rather different, fast (~250µs at 5K) and slower (~500µs at 20K), electron spin relaxation rates and a combined ~7.0mT wide EPR spectrum. Rapid freeze-quench CW- and pulsed-EPR measurements are used to identify these radicals and their origin. These two species are the same radical with identical nuclear hyperfine couplings, but with spin-spin couplings to high-spin (4.0mT component) or low-spin (7.0mT component) Fe(III) heme. Uncoupled reactions of nNOS leave the enzyme in states that can be chemically reduced to sustain unregulated production of NO and reactive oxygen species in ischemia-reperfusion injury. The broad EPR signal is a convenient indicator of uncoupled nNOS reactions producing low-spin Fe(III) heme.


Biopterins/analogs & derivatives , Heme/chemistry , Nitric Oxide Synthase Type I/chemistry , Recombinant Proteins/chemistry , Animals , Biopterins/chemistry , Brain Chemistry , Electron Spin Resonance Spectroscopy , Free Radicals/chemistry , Gene Expression , Nitric Oxide Synthase Type I/genetics , Oxidation-Reduction , Protein Domains , Rats , Recombinant Proteins/genetics , Solutions , Temperature
19.
J Inorg Biochem ; 164: 26-33, 2016 11.
Article En | MEDLINE | ID: mdl-27592288

Chromium (III) has been shown to act as a pharmacological agent improving insulin sensitivity in rodent models of obesity, insulin resistance, and diabetes. To act in beneficial fashion, chromium must reach insulin-sensitive tissues. Chromium is transported from the bloodstream to the tissues by the iron-transport protein transferrin. When blood concentrations of glucose are high (as in a diabetic subject), transferrin can be glycated, modifying its ability to bind and transport iron. However, the effects of glycation of transferrin on its ability to bind and transport Cr have not been examined previously. Storage of transferrin at 37°C in the presence and absence of glucose has significant effects on the binding of Cr. Transferrin stored in the absence of glucose only binds one equivalent of Cr tightly, compared to the normal binding of two equivalents of Cr by transferrin. Glycated transferrin (stored in the presence of glucose) binds two equivalents of Cr but the changes in its extinction coefficient at 245nm that accompany binding suggest that the Cr-bound transferrin possesses a conformation that deviates appreciably from untreated transferrin. These changes have dramatic effects, greatly reducing the ability of transferrin to transport Cr in vivo in rats. The results suggest that glycation of transferrin in subjects with high blood glucose concentrations should reduce the ability of Cr from pharmacological agents to enter tissues.


Chromium , Transferrin , Animals , Biological Transport, Active , Cattle , Chromium/chemistry , Chromium/pharmacokinetics , Chromium/pharmacology , Diabetes Mellitus/blood , Diabetes Mellitus/drug therapy , Glycosylation , Humans , Insulin Resistance , Male , Obesity/blood , Obesity/drug therapy , Rats , Rats, Sprague-Dawley , Transferrin/chemistry , Transferrin/pharmacokinetics , Transferrin/pharmacology
20.
Methods Enzymol ; 563: 311-40, 2015.
Article En | MEDLINE | ID: mdl-26478490

Pulsed EPR methods for the study of drug binding to heme-thiolate enzymes such as cytochrome P450 and nitric oxide synthase are discussed. HYSCORE and ENDOR methods to measure (1)H of axial ligands of the heme group are described with illustrations of water serving as the axial ligand in the drug-free enzyme and ligands coordinating directly to the heme or through one or more bridging water molecules. Some practical aspects of measurement and data processing are discussed along with prospects for use with other nuclei and at other EPR bands.


Cytochrome P-450 Enzyme System/chemistry , Electron Spin Resonance Spectroscopy/methods , Nitric Oxide Synthase/chemistry , Heme/chemistry , Ligands , Oxidation-Reduction , Water
...