Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Immunol ; 12: 650977, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34248938

RESUMEN

The cyclin-dependent kinase 6 (CDK6) regulates the transition through the G1-phase of the cell cycle, but also acts as a transcriptional regulator. As such CDK6 regulates cell survival or cytokine secretion together with STATs, AP-1 or NF-κB. In the hematopoietic system, CDK6 regulates T cell development and promotes leukemia and lymphoma. CDK4/6 kinase inhibitors are FDA approved for treatment of breast cancer patients and have been reported to enhance T cell-mediated anti-tumor immunity. The involvement of CDK6 in T cell functions remains enigmatic. We here investigated the role of CDK6 in CD8+ T cells, using previously generated CDK6 knockout (Cdk6-/-) and kinase-dead mutant CDK6 (Cdk6K43M) knock-in mice. RNA-seq analysis indicated a role of CDK6 in T cell metabolism and interferon (IFN) signaling. To investigate whether these CDK6 functions are T cell-intrinsic, we generated a T cell-specific CDK6 knockout mouse model (Cdk6fl/fl CD4-Cre). T cell-intrinsic loss of CDK6 enhanced mitochondrial respiration in CD8+ T cells, but did not impact on cytotoxicity and production of the effector cytokines IFN-γ and TNF-α by CD8+ T cells in vitro. Loss of CDK6 in peripheral T cells did not affect tumor surveillance of MC38 tumors in vivo. Similarly, while we observed an impaired induction of early responses to type I IFN in CDK6-deficient CD8+ T cells, we failed to observe any differences in the response to LCMV infection upon T cell-intrinsic loss of CDK6 in vivo. This apparent contradiction might at least partially be explained by the reduced expression of Socs1, a negative regulator of IFN signaling, in CDK6-deficient CD8+ T cells. Therefore, our data are in line with a dual role of CDK6 in IFN signaling; while CDK6 promotes early IFN responses, it is also involved in the induction of a negative feedback loop. These data assign CDK6 a role in the fine-tuning of cytokine responses.


Asunto(s)
Antivirales/inmunología , Linfocitos T CD8-positivos/inmunología , Quinasa 6 Dependiente de la Ciclina/inmunología , Citotoxicidad Inmunológica/inmunología , Interferones/inmunología , Neoplasias Experimentales/inmunología , Animales , Antivirales/metabolismo , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD8-positivos/metabolismo , Linfocitos T CD8-positivos/virología , Línea Celular , Línea Celular Tumoral , Quinasa 6 Dependiente de la Ciclina/genética , Quinasa 6 Dependiente de la Ciclina/metabolismo , Humanos , Interferones/metabolismo , Virus de la Coriomeningitis Linfocítica/inmunología , Virus de la Coriomeningitis Linfocítica/fisiología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Neoplasias Experimentales/metabolismo , Transducción de Señal/inmunología
2.
Molecules ; 26(7)2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33915732

RESUMEN

The neuropeptide galanin (GAL), which is expressed in limbic brain structures, has a strong impact on the regulation of mood and behavior. GAL exerts its effects via three G protein-coupled receptors (GAL1-3-R). Little is known about the effects of aging and loss of GAL-Rs on hippocampal-mediated processes connected to neurogenesis, such as learning, memory recall and anxiety, and cell proliferation and survival in the dorsal dentate gyrus (dDG) in mice. Our results demonstrate that loss of GAL3-R, but not GAL2-R, slowed learning and induced anxiety in older (12-14-month-old) mice. Lack of GAL2-R increased cell survival (BrdU incorporation) in the dDG of young mice. However, normal neurogenesis was observed in vitro using neural stem and precursor cells obtained from GAL2-R and GAL3-R knockouts upon GAL treatment. Interestingly, we found sub-strain differences between C57BL/6J and C57BL/6N mice, the latter showing faster learning, less anxiety and lower cell survival in the dDG. We conclude that GAL-R signaling is involved in cognitive functions and can modulate the survival of cells in the neurogenic niche, which might lead to new therapeutic applications. Furthermore, we observed that the mouse sub-strain had a profound impact on the behavioral parameters analyzed and should therefore be carefully considered in future studies.


Asunto(s)
Ansiedad/etiología , Susceptibilidad a Enfermedades , Aprendizaje/fisiología , Memoria/fisiología , Receptor de Galanina Tipo 2/genética , Receptor de Galanina Tipo 3/genética , Factores de Edad , Envejecimiento/genética , Envejecimiento/metabolismo , Envejecimiento/psicología , Animales , Ansiedad/metabolismo , Ansiedad/psicología , Biomarcadores , Giro Dentado/metabolismo , Modelos Animales de Enfermedad , Expresión Génica , Inmunohistoquímica , Aprendizaje por Laberinto , Ratones , Ratones Noqueados , Neuropéptidos/metabolismo , Receptor de Galanina Tipo 2/metabolismo , Receptor de Galanina Tipo 3/metabolismo , Aprendizaje Espacial , Especificidad de la Especie
3.
Oncotarget ; 8(39): 64728-64744, 2017 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-29029389

RESUMEN

Neuroblastoma (NB) is a pediatric malignancy characterized by a marked reduction in aerobic energy metabolism. Recent preclinical data indicate that targeting this metabolic phenotype by a ketogenic diet (KD), especially in combination with calorie restriction, slows tumor growth and enhances metronomic cyclophosphamide (CP) therapy of NB xenografts. Because calorie restriction would be contraindicated in most cancer patients, the aim of the present study was to optimize the KD such that the tumors are sensitized to CP without the need of calorie restriction. In a NB xenograft model, metronomic CP was combined with KDs of different triglyceride compositions and fed to CD1-nu mice ad libitum. Metronomic CP in combination with a KD containing 8-carbon medium-chain triglycerides exerted a robust anti-tumor effect, suppressing growth and causing a significant reduction of tumor blood-vessel density and intratumoral hemorrhage, accompanied by activation of AMP-activated protein kinase in NB cells. Furthermore, the KDs caused a significant reduction in the serum levels of essential amino acids, but increased those of serine, glutamine and glycine. Our data suggest that targeting energy metabolism by a modified KD may be considered as part of a multimodal treatment regimen to improve the efficacy of classic anti-NB therapy.

4.
Oncotarget ; 8(34): 57201-57215, 2017 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-28915665

RESUMEN

The ketogenic diet (KD), a high-fat low-carbohydrate diet, has shown some efficacy in the treatment of certain types of tumors such as brain tumors and neuroblastoma. These tumors are characterized by the Warburg effect. Because renal cell carcinoma (RCC) presents similar energetic features as neuroblastoma, KD might also be effective in the treatment of RCC. To test this, we established xenografts with RCC 786-O cells in CD-1 nu/nu mice and then randomized them to a control diet or to KDs with different triglyceride contents. Although the KDs tended to reduce tumor growth, mouse survival was dramatically reduced due to massive weight loss. A possible explanation comes from observations of human RCC patients, who often experience secondary non-metastatic hepatic dysfunction due to secretion of high levels of inflammatory cytokines by the RCCs. Measurement of the mRNA levels of tumor necrosis factor alpha (TNFα) and interleukin-6 revealed high expression in the RCC xenografts compared to the original 786-O cells. The expression of TNFα, interleukin-6 and C-reactive protein were all increased in the livers of tumor-bearing mice, and KD significantly boosted their expression. KDs did not cause weight loss or liver inflammation in healthy mice, suggesting that KDs are per se safe, but might be contraindicated in the treatment of RCC patients presenting with Stauffer's syndrome, because they potentially worsen the associated hepatic dysfunction.

5.
Oxid Med Cell Longev ; 2017: 7202589, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28804536

RESUMEN

Vertebrate respiratory chain complex III consists of eleven subunits. Mutations in five subunits either mitochondrial (MT-CYB) or nuclear (CYC1, UQCRC2, UQCRB, and UQCRQ) encoded have been reported. Defects in five further factors for assembly (TTC19, UQCC2, and UQCC3) or iron-sulphur cluster loading (BCS1L and LYRM7) cause complex III deficiency. Here, we report a second patient with UQCC2 deficiency. This girl was born prematurely; pregnancy was complicated by intrauterine growth retardation and oligohydramnios. She presented with respiratory distress syndrome, developed epileptic seizures progressing to status epilepticus, and died at day 33. She had profound lactic acidosis and elevated urinary pyruvate. Exome sequencing revealed two homozygous missense variants in UQCC2, leading to a severe reduction of UQCC2 protein. Deficiency of complexes I and III was found enzymatically and on the protein level. A review of the literature on genetically distinct complex III defects revealed that, except TTC19 deficiency, the biochemical pattern was very often a combined respiratory chain deficiency. Besides complex III, typically, complex I was decreased, in some cases complex IV. In accordance with previous observations, the presence of assembled complex III is required for the stability or assembly of complexes I and IV, which might be related to respirasome/supercomplex formation.


Asunto(s)
Complejo III de Transporte de Electrones/metabolismo , Fibroblastos/metabolismo , Encefalomiopatías Mitocondriales/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas/genética , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Western Blotting , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Complejo III de Transporte de Electrones/genética , Electroforesis en Gel de Poliacrilamida , Femenino , Humanos , Recién Nacido , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Encefalomiopatías Mitocondriales/genética , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo
7.
Proc Natl Acad Sci U S A ; 111(19): 7138-43, 2014 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-24782539

RESUMEN

The neuropeptide galanin (GAL) is widely distributed in the central and peripheral nervous systems. It is a modulator of various physiological and pathological processes, and it mediates its effects via three G protein-coupled receptors (GAL1-3 receptors). A role for GAL as a modulator of mood and anxiety was suggested, because GAL and its receptors are highly expressed in limbic brain structures of rodents. In recent years, numerous studies of animal models have suggested an involvement of GAL and GAL1 and GAL2 receptors in anxiety- and depression-related behavior. However, to date, there is sparse literature implicating GAL3 receptors in behavioral functions. Therefore, we studied the behavior of GAL3 receptor-deficient (GAL3-KO) mice to elucidate whether GAL3 receptors are involved in mediating behavior-associated actions of GAL. The GAL3-KO mouse line exhibited normal breeding and physical development. In addition to behavioral tests, phenotypic characterization included analysis of hematology, amino acid profiles, metabolism, and sudomotor function. In contrast to WT littermates, male GAL3-KO mice exhibited an anxiety-like phenotype in the elevated plus maze, open field, and light/dark box tests, and they were less socially affiliated than WT animals to a stranger mouse in a social interaction test. In conclusion, our data suggest involvement of GAL3 receptors in GAL-mediated effects on mood, anxiety, and behavior, making it a possible target for alternative treatment strategies for mood disorders.


Asunto(s)
Trastornos de Ansiedad/genética , Trastornos de Ansiedad/fisiopatología , Trastorno Depresivo/genética , Trastorno Depresivo/fisiopatología , Receptor de Galanina Tipo 3/genética , Animales , Conducta Animal/fisiología , Femenino , Masculino , Ratones , Ratones Noqueados , Modelos Animales , Fenotipo , Receptor de Galanina Tipo 3/metabolismo , Serotonina/metabolismo , Conducta Social , Glándulas Sudoríparas/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA