Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
1.
Alzheimers Dement ; 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38967283

RESUMEN

INTRODUCTION: Microtubule (MT) stability is crucial for proper neuronal function. Understanding MT dysregulation is critical for connecting amyloid beta (Aß) and tau-based degenerative events and early changes in presymptomatic Alzheimer's disease (AD). Herein we present positron emission tomography (PET) imaging properties of our MT-PET radiotracer, [11C]MPC-6827, in multiple established AD mouse models. METHODS: Longitudinal PET, biodistribution, autoradiography, immunohistochemistry, and behavioral studies were conducted at multiple time points in APPswe/PSEN1dE9 (APP/PS1), P301S-PS19 (P301S), 5xFAD, and age-matched control mice. RESULTS: Longitudinal [11C]MPC-6827 brain imaging showed significant increases in APP/PS1, P301S, and 5xFAD mice compared to controls. Longitudinal MT-PET correlated positively with biodistribution, autoradiography, and immunohistochemistry results and negatively with behavior data. DISCUSSION: Our study demonstrated significant longitudinal [11C]MPC-6827 PET increases in multiple AD mouse models for the first time. Strong correlations between PET and biomarker data underscored the interplay of MT destabilization, amyloid, and tau pathology in AD. These results suggest [11C]MPC-6827 PET as a promising tool for monitoring MT dysregulation early in AD progression. HIGHLIGHTS: Longitudinal positron emission tomography (PET) imaging studies using [11C]MPC-6827 in multiple established Alzheimer's disease (AD) mouse models revealed an early onset of microtubule dysregulation, with significant changes in brain radiotracer uptake evident from 2 to 4 months of age. Intra-group analysis showed a progressive increase in microtubule dysregulation with increasing AD burden, supported by significant correlations between PET imaging data and biodistribution, autoradiography, and molecular pathological markers. [11C]MPC-6827 PET imaging demonstrated its efficacy in detecting early microtubule alterations preceding observable behavioral changes in AD mouse models, suggesting its potential for early AD imaging. The inclusion of the 5xFAD mouse model further elucidated the impact of amyloid beta (Aß) toxicity on inducing tau hyperphosphorylation-mediated microtubule dysregulation, highlighting the versatility of [11C]MPC-6827 in delineating various aspects of AD pathology. Our study provides immediate clarity on high uptake of the microtubule-based radiotracer in AD brains in a longitudinal setting, which directly informs clinical utility in Aß/tau-based studies.

2.
J Alzheimers Dis ; 100(1): 53-75, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38820016

RESUMEN

Background: A screening tool sensitive to Alzheimer's disease (AD) risk factors, such as amyloid-ß (Aß) deposition, and subtle cognitive changes, best elicited by complex everyday tasks, is needed. Objective: To determine if grocery shopping performance could differentiate older adults at elevated risk of developing AD (OAer), older adults at low risk of developing AD (OAlr), and young adults (YA), and if amount of Aß deposition could predict grocery shopping performance in older adults (OA). Methods: Twenty-one OAer (78±5 years), 33 OAlr (78±5 years), and 28 YA (31±3 years) performed four grocery shopping trials, with the best and worst performances analyzed. Measures included trial time, number of correct items, number of grocery note fixations, and number of fixations and percentage of time fixating on the correct shelving unit, correct brand, and correct shelf. Linear mixed effects models compared measures by performance rank (best, worst) and group (OAer, OAlr, YA), and estimated the effect of Aß deposition on measures in OA. Results: Relative to their best performance, OAer and OAlr exhibited more correct shelving unit fixations and correct brand fixations during their worst performance, while YA did not. Within OA's worst performance, greater Aß deposition was associated with a smaller percentage of time fixating on the correct shelving unit, correct shelf, and correct brand. Within OA, greater Aß deposition was associated with more grocery note fixations. Conclusions: OA with elevated Aß deposition may exhibit subtle working memory impairments and less efficient visual search strategies while performing a cognitively demanding everyday task.


Asunto(s)
Péptidos beta-Amiloides , Humanos , Anciano , Masculino , Femenino , Péptidos beta-Amiloides/metabolismo , Adulto , Anciano de 80 o más Años , Pruebas Neuropsicológicas/estadística & datos numéricos , Tomografía de Emisión de Positrones , Enfermedad de Alzheimer/psicología , Adulto Joven , Envejecimiento/fisiología , Envejecimiento/psicología , Actividades Cotidianas , Encéfalo/metabolismo
3.
Alzheimers Dement ; 20(6): 4159-4173, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38747525

RESUMEN

INTRODUCTION: We evaluated associations between plasma and neuroimaging-derived biomarkers of Alzheimer's disease and related dementias and the impact of health-related comorbidities. METHODS: We examined plasma biomarkers (neurofilament light chain, glial fibrillary acidic protein, amyloid beta [Aß] 42/40, phosphorylated tau 181) and neuroimaging measures of amyloid deposition (Aß-positron emission tomography [PET]), total brain volume, white matter hyperintensity volume, diffusion-weighted fractional anisotropy, and neurite orientation dispersion and density imaging free water. Participants were adjudicated as cognitively unimpaired (CU; N = 299), mild cognitive impairment (MCI; N = 192), or dementia (DEM; N = 65). Biomarkers were compared across groups stratified by diagnosis, sex, race, and APOE ε4 carrier status. General linear models examined plasma-imaging associations before and after adjusting for demographics (age, sex, race, education), APOE ε4 status, medications, diagnosis, and other factors (estimated glomerular filtration rate [eGFR], body mass index [BMI]). RESULTS: Plasma biomarkers differed across diagnostic groups (DEM > MCI > CU), were altered in Aß-PET-positive individuals, and were associated with poorer brain health and kidney function. DISCUSSION: eGFR and BMI did not substantially impact associations between plasma and neuroimaging biomarkers. HIGHLIGHTS: Plasma biomarkers differ across diagnostic groups (DEM > MCI > CU) and are altered in Aß-PET-positive individuals. Altered plasma biomarker levels are associated with poorer brain health and kidney function. Plasma and neuroimaging biomarker associations are largely independent of comorbidities.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Biomarcadores , Imagen por Resonancia Magnética , Tomografía de Emisión de Positrones , Humanos , Masculino , Femenino , Biomarcadores/sangre , Anciano , Enfermedad de Alzheimer/sangre , Enfermedad de Alzheimer/diagnóstico por imagen , Péptidos beta-Amiloides/sangre , Comorbilidad , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Demencia/sangre , Demencia/diagnóstico por imagen , Proteínas tau/sangre , Estudios de Cohortes , Vida Independiente , Disfunción Cognitiva/sangre , Disfunción Cognitiva/diagnóstico por imagen , Persona de Mediana Edad , Neuroimagen
4.
Brain Behav Immun ; 119: 681-692, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38636565

RESUMEN

Mediterranean diets may be neuroprotective and prevent cognitive decline relative to Western diets; however, the underlying biology is poorly understood. We assessed the effects of Western versus Mediterranean-like diets on RNAseq-generated transcriptional profiles in lateral temporal cortex and their relationships with longitudinal changes in neuroanatomy, circulating monocyte gene expression, and observations of social isolation and anxiety in 38 socially-housed, middle-aged female cynomolgus macaques (Macaca fascicularis). Diet resulted in differential expression of seven transcripts (FDR < 0.05). Cyclin dependent kinase 14 (CDK14), a proinflammatory regulator, was lower in the Mediterranean group. The remaining six transcripts [i.e., "lunatic fringe" (LFNG), mannose receptor C type 2 (MRC2), solute carrier family 3 member 2 (SLCA32), butyrophilin subfamily 2 member A1 (BTN2A1), katanin regulatory subunit B1 (KATNB1), and transmembrane protein 268 (TMEM268)] were higher in cortex of the Mediterranean group and generally associated with anti-inflammatory/neuroprotective pathways. KATNB1 encodes a subcomponent of katanin, important in maintaining microtubule homeostasis. BTN2A1 is involved in immunomodulation of γδ T-cells which have anti-neuroinflammatory and neuroprotective effects. CDK14, LFNG, MRC2, and SLCA32 are associated with inflammatory pathways. The latter four differentially expressed cortex transcripts were associated with peripheral monocyte transcript levels, neuroanatomical changes determined by MRI, and with social isolation and anxiety. These results provide important insights into the potential mechanistic processes linking diet, peripheral and central inflammation, and behavior. Collectively, our results provide evidence that, relative to Western diets, Mediterranean diets confer protection against peripheral and central inflammation which is reflected in preserved brain structure and socioemotional behavior. Ultimately, such protective effects may confer resilience to the development of neuropathology and associated disease.


Asunto(s)
Ansiedad , Encéfalo , Dieta Mediterránea , Inflamación , Macaca fascicularis , Aislamiento Social , Transcriptoma , Animales , Femenino , Ansiedad/metabolismo , Inflamación/metabolismo , Encéfalo/metabolismo , Enfermedades Neuroinflamatorias/metabolismo , Lóbulo Temporal/metabolismo
5.
Artículo en Inglés | MEDLINE | ID: mdl-38602189

RESUMEN

Blood-based mitochondrial bioenergetic profiling is a feasible, economical, and minimally invasive approach that can be used to examine mitochondrial function and energy metabolism in human subjects. In this study, we use 2 complementary respirometric techniques to evaluate mitochondrial bioenergetics in both intact and permeabilized peripheral blood mononuclear cells (PBMCs) and platelets to examine sex dimorphism in mitochondrial function among older adults. Employing equal numbers of PBMCs and platelets to assess mitochondrial bioenergetics, we observe significantly higher respiration rates in female compared to male participants. Mitochondrial bioenergetic differences remain significant after controlling for independent parameters including demographic parameters (age, years of education), and cognitive parameters (mPACC5, COGDX). Our study illustrates that circulating blood cells, immune cells in particular, have distinctly different mitochondrial bioenergetic profiles between females and males. These differences should be taken into account as blood-based bioenergetic profiling is now commonly used to understand the role of mitochondrial bioenergetics in human health and aging.


Asunto(s)
Metabolismo Energético , Leucocitos Mononucleares , Mitocondrias , Humanos , Masculino , Femenino , Mitocondrias/metabolismo , Anciano , Metabolismo Energético/fisiología , Leucocitos Mononucleares/metabolismo , Plaquetas/metabolismo , Envejecimiento/fisiología , Factores Sexuales , Caracteres Sexuales , Anciano de 80 o más Años
6.
J Alzheimers Dis ; 99(2): 679-691, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38669545

RESUMEN

Background: The preclinical Alzheimer's cognitive composite (PACC) was developed for in-person administration to capture subtle cognitive decline. At the outset of the COVID-19 pandemic, cognitive testing was increasingly performed remotely by telephone or video administration. It is desirable to have a harmonized composite measurement derived from both in-person and remote assessments for identifying cognitive changes and to examine its relationship with common neuroimaging biomarkers. Objective: We defined a telehealth compatible PACC (tPACC) and examined its relationship with neuroimaging biomarkers related to neurodegeneration, brain function and perfusion, white matter integrity, and amyloid-ß. Methods: We examined 648 participants' neuroimaging and in-person and remote cognitive testing data from the Wake Forest Alzheimer's Disease Research Center's Clinical Core cohort (observational study) to calculate a modified PACC (PACC5-RAVLT) score and tPACC scores (in-person and remote). We performed Spearman/intraclass correlation coefficient (ICC) analyses for reliability of tPACC scores and linear regression models to evaluate associations between tPACC and neuroimaging. Bland-Altman plots for agreement were constructed across cognitively normal and impaired (mild cognitive impairment and dementia) participants. Results: There was a significant positive relationship between tPACCin - person and PACC5-RAVLT (Overall group: r2 = 0.94, N = 648), and tPACCin - person and tPACCremote (validation subgroup: ICC = 0.82, n = 53). Overall, tPACC showed significant associations with brain thickness/volume, gray matter perfusion, white matter free water, and amyloid-ß deposition. Conclusions: There is a good agreement between tPACCand PACC5-RAVLTfor cognitively normal and impaired individuals. The tPACC is associated with common neuroimaging markers of Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer , Biomarcadores , Disfunción Cognitiva , Neuroimagen , Pruebas Neuropsicológicas , Telemedicina , Humanos , Enfermedad de Alzheimer/diagnóstico por imagen , Femenino , Masculino , Anciano , Neuroimagen/métodos , Disfunción Cognitiva/diagnóstico por imagen , Reproducibilidad de los Resultados , COVID-19 , Encéfalo/diagnóstico por imagen , Anciano de 80 o más Años , Persona de Mediana Edad , Péptidos beta-Amiloides/metabolismo , Imagen por Resonancia Magnética/métodos
7.
Front Neurosci ; 18: 1331677, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38384484

RESUMEN

Background: Frontotemporal dementia (FTD) represents a collection of neurobehavioral and neurocognitive syndromes that are associated with a significant degree of clinical, pathological, and genetic heterogeneity. Such heterogeneity hinders the identification of effective biomarkers, preventing effective targeted recruitment of participants in clinical trials for developing potential interventions and treatments. In the present study, we aim to automatically differentiate patients with three clinical phenotypes of FTD, behavioral-variant FTD (bvFTD), semantic variant PPA (svPPA), and nonfluent variant PPA (nfvPPA), based on their structural MRI by training a deep neural network (DNN). Methods: Data from 277 FTD patients (173 bvFTD, 63 nfvPPA, and 41 svPPA) recruited from two multi-site neuroimaging datasets: the Frontotemporal Lobar Degeneration Neuroimaging Initiative and the ARTFL-LEFFTDS Longitudinal Frontotemporal Lobar Degeneration databases. Raw T1-weighted MRI data were preprocessed and parcellated into patch-based ROIs, with cortical thickness and volume features extracted and harmonized to control the confounding effects of sex, age, total intracranial volume, cohort, and scanner difference. A multi-type parallel feature embedding framework was trained to classify three FTD subtypes with a weighted cross-entropy loss function used to account for unbalanced sample sizes. Feature visualization was achieved through post-hoc analysis using an integrated gradient approach. Results: The proposed differential diagnosis framework achieved a mean balanced accuracy of 0.80 for bvFTD, 0.82 for nfvPPA, 0.89 for svPPA, and an overall balanced accuracy of 0.84. Feature importance maps showed more localized differential patterns among different FTD subtypes compared to groupwise statistical mapping. Conclusion: In this study, we demonstrated the efficiency and effectiveness of using explainable deep-learning-based parallel feature embedding and visualization framework on MRI-derived multi-type structural patterns to differentiate three clinically defined subphenotypes of FTD: bvFTD, nfvPPA, and svPPA, which could help with the identification of at-risk populations for early and precise diagnosis for intervention planning.

8.
Hum Mov Sci ; 93: 103175, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38198920

RESUMEN

BACKGROUND: Capturing a measure of movement quality during a complex walking task may indicate the earliest signs of detrimental changes to the brain due to beta amyloid (Aß) deposition and be a potential differentiator of older adults at elevated and low risk of developing Alzheimer's disease. This study aimed to determine: 1) age-related differences in gait speed, stride length, and gait smoothness while transitioning from an even to an uneven walking surface, by comparing young adults (YA) and older adults (OA), and 2) if gait speed, stride length, and gait smoothness in OA while transitioning from an even to an uneven walking surface is influenced by the amount of Aß deposition present in an OA's brain. METHODS: Participants included 56 OA (>70 years of age) and 29 YA (25-35 years of age). In OA, Aß deposition in the brain was quantified by PET imaging. All participants completed a series of cognitive assessments, a functional mobility assessment, and self-report questionnaires. Then participants performed two sets of walking trials on a custom-built walkway containing a mixture of even and uneven surface sections, including three trials with a grass uneven surface and three trials with a rocks uneven surface. Gait data were recorded using a wireless inertial measurement unit system. Stride length, gait speed, and gait smoothness (i.e., log dimensionless lumbar jerk) in the anteroposterior (AP), mediolateral (ML), and vertical (VT) directions were calculated for each stride. Outcomes were retained for five stride locations immediately surrounding the surface transition. RESULTS: OA exhibited slower gait (Grass: p < 0.001; Rocks: p = 0.006), shorter strides (Grass: p < 0.001; Rocks: p = 0.008), and smoother gait (Grass AP: p < 0.001; Rocks AP: p = 0.002; Rocks ML: p = 0.02) than YA, but they also exhibited greater reductions in gait speed and stride length than YA while transitioning to the uneven grass and rocks surfaces. Within the OA group, those with greater Aß deposition exhibited decreases in smoothness with age (Grass AP: p = 0.02; Rocks AP: p = 0.03; Grass ML: p = 0.04; Rocks ML: p = 0.03), while those with lower Aß deposition exhibited increasing smoothness with age (Grass AP: p = 0.01; Rocks AP: p = 0.02; Grass ML: p = 0.08; Rocks ML: p = 0.07). Better functional mobility was associated with less smooth gait (Grass ML: p = 0.02; Rocks ML: p = 0.05) and with less variable gait smoothness (Grass and Rocks AP: both p = 0.04) in the OA group. CONCLUSION: These results suggest that, relative to YA, OA may be adopting more cautious, compensatory gait strategies to maintain smoothness when approaching surface transitions. However, OA with greater Aß deposition may have limited ability to adopt compensatory gait strategies to increase the smoothness of their walking as they get older because of neuropathological changes altering the sensory integration process and causing worse dynamic balance (i.e., jerkier gait). Functional mobility, in addition to age and Aß deposition, may be an important factor of whether or not an OA chooses to employ compensatory strategies to prioritize smoothness while walking and what type of compensatory strategy an OA chooses.


Asunto(s)
Trastornos del Movimiento , Velocidad al Caminar , Adulto Joven , Humanos , Anciano , Adulto , Péptidos beta-Amiloides , Marcha , Caminata , Encéfalo
9.
Alzheimers Dement ; 20(2): 941-953, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37828734

RESUMEN

INTRODUCTION: Retinal vascular network changes may reflect the integrity of the cerebral microcirculation, and may be associated with cognitive impairment. METHODS: Associations of retinal vascular measures with cognitive function and MRI biomarkers were examined amongst Multi-Ethnic Study of Atherosclerosis (MESA) participants in North Carolina who had gradable retinal photographs at Exams 2 (2002 to 2004, n = 313) and 5 (2010 to 2012, n = 306), and detailed cognitive testing and MRI at Exam 6 (2016 to 2018). RESULTS: After adjustment for covariates and multiple comparisons, greater arteriolar fractal dimension (FD) at Exam 2 was associated with less isotropic free water of gray matter regions (ß = -0.0005, SE = 0.0024, p = 0.01) at Exam 6, while greater arteriolar FD at Exam 5 was associated with greater gray matter cortical volume (in mm3 , ß = 5458, SE = 20.17, p = 0.04) at Exam 6. CONCLUSION: Greater arteriolar FD, reflecting greater complexity of the branching pattern of the retinal arteries, is associated with MRI biomarkers indicative of less neuroinflammation and neurodegeneration.


Asunto(s)
Aterosclerosis , Fractales , Humanos , Vasos Retinianos/diagnóstico por imagen , Aterosclerosis/diagnóstico por imagen , Neuroimagen , Biomarcadores , Cognición
10.
bioRxiv ; 2023 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-37961556

RESUMEN

INTRODUCTION: Mediterranean diets may be neuroprotective and prevent cognitive decline relative to Western diets, however the underlying biology is poorly understood. METHODS: We assessed the effects of Western vs. Mediterranean-like diets on RNAseq generated transcriptional profiles in temporal cortex and their relationships with changes in MRI neuroimaging phenotypes, circulating monocyte gene expression, and observations of social isolation and anxiety in 38 socially-housed, middle-aged female cynomolgus macaques. RESULTS: Diet resulted in differential expression of seven transcripts (FDR<0.05). Cyclin dependent kinase 14 ( CDK14 ), a proinflammatory regulator, was lower in the Mediterranean group. The remaining six transcripts [i.e., "lunatic fringe" ( LFNG ), mannose receptor C type 2 ( MRC2 ), solute carrier family 3 member 2 ( SLCA32 ), butyrophilin subfamily 2 member A1 ( BTN2A1 ), katanin regulatory subunit B1 ( KATNB1 ), and transmembrane protein 268 ( TMEM268 )] were higher in cortex of the Mediterranean group and generally associated with anti-inflammatory/neuroprotective pathways. KATNB1 encodes a subcomponent of katanin, important in maintaining microtubule homeostasis. BTN2A1 is involved in immunomodulation of γδ T-cells which have anti-neuroinflammatory and neuroprotective effects. CDK14 , LFNG , MRC2, and SLCA32 are associated with inflammatory pathways. The latter four differentially expressed cortex transcripts were associated with monocyte transcript levels, changes in AD-relevant brain volumes determined by MRI over the course of the study, and social isolation and anxiety. CDK14 was positively correlated with monocyte inflammatory transcripts, changes in total brain, gray matter, cortical gray matter volumes, and time alone and anxious behavior, and negatively correlated with changes in total white matter and cerebrospinal fluid (CSF) volumes. In contrast, LFNG , MRC2 , and SLCA32 were negatively correlated with monocyte inflammatory transcripts and changes in total gray matter volume, and positively correlated with CSF volume changes, and SLCA32 was negatively correlated with time alone. DISCUSSION: Collectively, our results suggest that relative to Western diets, Mediterranean diets confer protection against peripheral and central inflammation which is reflected in preserved brain structure and behavior.

11.
Sci Rep ; 13(1): 15779, 2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37737298

RESUMEN

Studies over the last 100 years have suggested a link between inflammation, infectious disease, and Alzheimer's Disease (AD). Understanding how the immune system changes during the development of AD may facilitate new treatments. Here, we studied an aging cohort who had been assessed for AD pathology with amyloid positron emission tomography and cognitive testing, and conducted high dimensional flow cytometry on peripheral blood mononuclear and cerebrospinal fluid cells. Participants were assigned a classification of being amyloid negative cognitively normal, amyloid positive cognitively normal (APCN), or amyloid positive mild cognitive impairment (APMCI), an early stage of AD. We observed major alterations in the peripheral innate immune system including increased myeloid and plasmacytoid dendritic cells in the blood of APMCI participants. When the adaptive immune system was examined, amyloid positive participants, regardless of cognitive status, had increased CD3+ T cells. Further analyses of CD4+ and CD8+ T cells revealed that APMCI participants had an increase in more differentiated phenotype T cells, such as effector memory and effector memory CD45RA expressing (TEMRA), compared to those with normal cognition. When T cell function was measured, we observed that T cells from APCN participants had increased IFNγ+GzB- producing cells compared to the other participants. In contrast, we demonstrate that APMCI participants had a major increase in T cells that lacked cytokine production following restimulation and expressed increased levels of PD-1 and Tox, suggesting these are exhausted cells. Rejuvenation of these cells may provide a potential treatment for AD.


Asunto(s)
Enfermedad de Alzheimer , Agotamiento de Células T , Humanos , Linfocitos T CD8-positivos , Leucocitos Mononucleares , Tomografía Computarizada por Rayos X , Proteínas Amiloidogénicas
12.
ACS Chem Neurosci ; 14(20): 3745-3751, 2023 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-37724996

RESUMEN

The microtubule (MT) instability observed in Alzheimer's disease (AD) is commonly attributed to hyperphosphorylation of the MT-associated protein, tau. In vivo PET imaging offers an opportunity to gain critical information about MT changes with the onset and development of AD and related dementia. We developed the first brain-penetrant MT PET ligand, [11C]MPC-6827, and evaluated its in vivo imaging utility in vervet monkeys. Consistent with our previous in vitro cell uptake and in vivo rodent imaging experiments, [11C]MPC-6827 uptake increased with MT destabilization. Radioactive uptake was inversely related to (cerebrospinal fluid) CSF Aß42 levels and directly related to age in a nonhuman primate (NHP) model of AD. Additionally, in vitro autoradiography studies also corroborated PET imaging results. Here, we report the preliminary results of PET imaging with [11C]MPC-6827 in four female vervet monkeys with high or low CSF Aß42 levels, which have been shown to correlate with the Aß plaque burden, similar to humans.


Asunto(s)
Enfermedad de Alzheimer , Animales , Femenino , Humanos , Chlorocebus aethiops , Enfermedad de Alzheimer/diagnóstico por imagen , Péptidos beta-Amiloides/metabolismo , Proteínas tau/metabolismo , Tomografía de Emisión de Positrones/métodos , Microtúbulos/metabolismo , Primates/metabolismo , Biomarcadores/líquido cefalorraquídeo , Fragmentos de Péptidos
13.
J Neurol Neurosurg Psychiatry ; 95(1): 44-51, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-37558399

RESUMEN

OBJECTIVES: Alzheimer's disease (AD) is characterised by amyloid-beta accumulation (A), tau aggregation (T) and neurodegeneration (N). Vascular (V) burden has been found concomitantly with AD pathology and has synergistic effects on cognitive decline with AD biomarkers. We determined whether cognitive trajectories of AT(N) categories differed according to vascular (V) burden. METHODS: We prospectively recruited 205 participants and classified them into groups based on the AT(N) system using neuroimaging markers. Abnormal V markers were identified based on the presence of severe white matter hyperintensities. RESULTS: In A+ category, compared with the frequency of Alzheimer's pathological change category (A+T-), the frequency of AD category (A+T+) was significantly lower in V+ group (31.8%) than in V- group (64.4%) (p=0.004). Each AT(N) biomarker was predictive of cognitive decline in the V+ group as well as in the V- group (p<0.001). Additionally, the V+ group showed more severe cognitive trajectories than the V- group in the non-Alzheimer's pathological changes (A-T+, A-N+; p=0.002) and Alzheimer's pathological changes (p<0.001) categories. CONCLUSION: The distribution and longitudinal outcomes of AT(N) system differed according to vascular burdens, suggesting the importance of incorporating a V biomarker into the AT(N) system.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides , Neuroimagen/métodos , Disfunción Cognitiva/complicaciones , Biomarcadores , Proteínas tau
14.
medRxiv ; 2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37333113

RESUMEN

INTRODUCTION: Adverse psychosocial exposure is associated with increased proinflammatory gene expression and reduced type-1 interferon gene expression, a profile known as the conserved transcriptional response to adversity (CTRA). Little is known about CTRA activity in the context of cognitive impairment, although chronic inflammatory activation has been posited as one mechanism contributing to late-life cognitive decline. METHODS: We studied 171 community-dwelling older adults from the Wake Forest Alzheimer's Disease Research Center who answered questions via a telephone questionnaire battery about their perceived stress, loneliness, well-being, and impact of COVID-19 on their life, and who provided a self-collected dried blood spot sample. Of those, 148 had adequate samples for mRNA analysis, and 143 were included in the final analysis, which including participants adjudicated as having normal cognition (NC, n = 91) or mild cognitive impairment (MCI, n = 52) were included in the analysis. Mixed effect linear models were used to quantify associations between psychosocial variables and CTRA gene expression. RESULTS: In both NC and MCI groups, eudaimonic well-being (typically associated with a sense of purpose) was inversely associated with CTRA gene expression whereas hedonic well-being (typically associated with pleasure seeking) was positively associated. In participants with NC, coping through social support was associated with lower CTRA gene expression, whereas coping by distraction and reframing was associated with higher CTRA gene expression. CTRA gene expression was not related to coping strategies for participants with MCI, or to either loneliness or perceived stress in either group. DISCUSSION: Eudaimonic and hedonic well-being remain important correlates of molecular markers of stress, even in people with MCI. However, prodromal cognitive decline appears to moderate the significance of coping strategies as a correlate of CTRA gene expression. These results suggest that MCI can selectively alter biobehavioral interactions in ways that could potentially affect the rate of future cognitive decline and may serve as targets for future intervention efforts.

15.
Magn Reson Med ; 90(2): 583-595, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37092852

RESUMEN

PURPOSE: To reduce the total scan time of multiple postlabeling delay (multi-PLD) pseudo-continuous arterial spin labeling (pCASL) by developing a hierarchically structured 3D convolutional neural network (H-CNN) that estimates the arterial transit time (ATT) and cerebral blow flow (CBF) maps from the reduced number of PLDs as well as averages. METHODS: A total of 48 subjects (38 females and 10 males), aged 56-80 years, compromising a training group (n = 45) and a validation group (n = 3) underwent MRI including multi-PLD pCASL. We proposed an H-CNN to estimate the ATT and CBF maps using a reduced number of PLDs and a separately reduced number of averages. The proposed method was compared with a conventional nonlinear model fitting method using the mean absolute error (MAE). RESULTS: The H-CNN provided the MAEs of 32.69 ms for ATT and 3.32 mL/100 g/min for CBF estimations using a full data set that contains six PLDs and six averages in the 3 test subjects. The H-CNN also showed that the smaller number of PLDs can be used to estimate both ATT and CBF without significant discrepancy from the reference (MAEs of 231.45 ms for ATT and 9.80 mL/100 g/min for CBF using three of six PLDs). CONCLUSION: The proposed machine learning-based ATT and CBF mapping offers substantially reduced scan time of multi-PLD pCASL.


Asunto(s)
Arterias , Imagen por Resonancia Magnética , Masculino , Femenino , Humanos , Reproducibilidad de los Resultados , Imagen por Resonancia Magnética/métodos , Redes Neurales de la Computación , Circulación Cerebrovascular/fisiología , Marcadores de Spin
16.
Alzheimers Dement ; 19(11): 4952-4966, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37071449

RESUMEN

INTRODUCTION: Brain cell-derived small extracellular vesicles (sEVs) in blood offer unique cellular and molecular information related to the onset and progression of Alzheimer's disease (AD). We simultaneously enriched six specific sEV subtypes from the plasma and analyzed a selected panel of microRNAs (miRNAs) in older adults with/without cognitive impairment. METHODS: Total sEVs were isolated from the plasma of participants with normal cognition (CN; n = 11), mild cognitive impairment (MCI; n = 11), MCI conversion to AD dementia (MCI-AD; n = 6), and AD dementia (n = 11). Various brain cell-derived sEVs (from neurons, astrocytes, microglia, oligodendrocytes, pericytes, and endothelial cells) were enriched and analyzed for specific miRNAs. RESULTS: miRNAs in sEV subtypes differentially expressed in MCI, MCI-AD, and AD dementia compared to the CN group clearly distinguished dementia status, with an area under the curve (AUC) > 0.90 and correlated with the temporal cortical region thickness on magnetic resonance imaging (MRI). DISCUSSION: miRNA analyses in specific sEVs could serve as a novel blood-based molecular biomarker for AD. HIGHLIGHTS: Multiple brain cell-derived small extracellular vesicles (sEVs) could be isolated simultaneously from blood. MicroRNA (miRNA) expression in sEVs could detect Alzheimer's disease (AD) with high specificity and sensitivity. miRNA expression in sEVs correlated with cortical region thickness on magnetic resonance imaging (MRI). Altered expression of miRNAs in sEVCD31 and sEVPDGFRß suggested vascular dysfunction. miRNA expression in sEVs could predict the activation state of specific brain cell types.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Vesículas Extracelulares , MicroARNs , Humanos , Anciano , Enfermedad de Alzheimer/patología , Células Endoteliales/patología , Disfunción Cognitiva/diagnóstico , MicroARNs/genética , Biomarcadores
17.
Neuroimage ; 265: 119761, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36455762

RESUMEN

Accurate measurement of Alzheimer's disease (AD) pathology in older adults without significant clinical impairment is critical to assessing intervention strategies aimed at slowing AD-related cognitive decline. The U.S. Study to Protect Brain Health Through Lifestyle Intervention to Reduce Risk (POINTER) is a 2-year randomized controlled trial to evaluate the effect of multicomponent risk reduction strategies in older adults (60-79 years) who are cognitively unimpaired but at increased risk for cognitive decline/dementia due to factors such as cardiovascular disease and family history. The POINTER Imaging ancillary study is collecting tau-PET ([18F]MK6240), beta-amyloid (Aß)-PET ([18F]florbetaben [FBB]) and MRI data to evaluate neuroimaging biomarkers of AD and cerebrovascular pathophysiology in this at-risk sample. Here 481 participants (70.0±5.0; 66% F) with baseline MK6240, FBB and structural MRI scans were included. PET scans were coregistered to the structural MRI which was used to create FreeSurfer-defined reference regions and target regions of interest (ROIs). We also created off-target signal (OTS) ROIs to examine the magnitude and distribution of MK6240 OTS across the brain as well as relationships between OTS and age, sex, and race. OTS was unimodally distributed, highly correlated across OTS ROIs and related to younger age and sex but not race. Aiming to identify an optimal processing approach for MK6240 that would reduce the influence of OTS, we compared our previously validated MRI-guided standard PET processing and 6 alternative approaches. The alternate approaches included combinations of reference region erosion and meningeal OTS masking before spatial smoothing as well as partial volume correction. To compare processing approaches we examined relationships between target ROIs (entorhinal cortex (ERC), hippocampus or a temporal meta-ROI (MetaROI)) SUVR and age, sex, race, Aß and a general cognitive status measure, the Modified Telephone Interview for Cognitive Status (TICSm). Overall, the processing approaches performed similarly, and none showed a meaningful improvement over standard processing. Across processing approaches we observed previously reported relationships with MK6240 target ROIs including positive associations with age, an Aß+> Aß- effect and negative associations with cognition. In sum, we demonstrated that different methods for minimizing effects of OTS, which is highly correlated across the brain within subject, produced no substantive change in our performance metrics. This is likely because OTS contaminates both reference and target regions and this contamination largely cancels out in SUVR data. Caution should be used when efforts to reduce OTS focus on target or reference regions in isolation as this may exacerbate OTS contamination in SUVR data.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Anciano , Humanos , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/patología , Tomografía de Emisión de Positrones/métodos , Proteínas tau/metabolismo , Persona de Mediana Edad
18.
Alzheimers Dement ; 19(4): 1466-1478, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-35870133

RESUMEN

INTRODUCTION: Despite evidence for systemic mitochondrial dysfunction early in Alzheimer's disease (AD) pathogenesis, reliable approaches monitoring these key bioenergetic alterations are lacking. We used peripheral blood mononuclear cells (PBMCs) and platelets as reporters of mitochondrial function in the context of cognitive impairment and AD. METHODS: Mitochondrial function was analyzed using complementary respirometric approaches in intact and permeabilized cells from older adults with normal cognition, mild cognitive impairment (MCI), and dementia due to probable AD. Clinical outcomes included measures of cognitive function and brain morphology. RESULTS: PBMC and platelet bioenergetic parameters were lowest in dementia participants. MCI platelets exhibited higher maximal respiration than normocognitives. PBMC and platelet respiration positively associated with cognitive ability and hippocampal volume, and negatively associated with white matter hyperintensities. DISCUSSION: Our findings indicate blood-based bioenergetic profiling can be used as a minimally invasive approach for measuring systemic bioenergetic differences associated with dementia, and may be used to monitor bioenergetic changes associated with AD risk and progression. HIGHLIGHTS: Peripheral cell bioenergetic alterations accompanied cognitive decline in older adults with mild cognitive impairment (MCI) and Alzheimer's disease (AD) and related dementia (DEM). Peripheral blood mononuclear cells (PBMC) and platelet glucose-mediated respiration decreased in participants with dementia compared to normocognitive controls (NC). PBMC fatty-acid oxidation (FAO)-mediated respiration progressively declined in MCI and AD compared to NC participants, while platelet FAO-mediated respiration exhibited an inverse-Warburg effect in MCI compared to NC participants. Positive associations were observed between bioenergetics and Modified Preclinical Alzheimer's Cognitive Composite, and bioenergetics and hippocampal volume %, while a negative association was observed between bioenergetics and white matter hyperintensities. Systemic mitochondrial dysfunction is associated with cognitive decline.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Anciano , Enfermedad de Alzheimer/patología , Leucocitos Mononucleares/patología , Mitocondrias , Metabolismo Energético , Cognición , Disfunción Cognitiva/patología
19.
Neurocase ; 29(3): 92-97, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-38687122

RESUMEN

Alzheimer's Disease (AD) is the most common cause of dementia, although multiple pathologies are found in nearly half of the cases with clinically diagnosed AD. Prion diseases, such as Creutzfeldt-Jakob disease (CJD), are rare causes of dementia and typically manifest as a rapidly progressive dementia, where symptom onset to dementia most often occurs over the course of months. In this brief report, we describe a patient's typically progressive dementia with a precipitous decline at the end of their life who, on neuropathological evaluation, was found to have multiple neurodegenerative proteinopathies as well as spongiform encephalopathy due to CJD. This case of unsuspected CJD highlights a rare, but epidemiologically important, cause of sudden decline in well-established neurodegenerative dementias.


Asunto(s)
Síndrome de Creutzfeldt-Jakob , Demencia , Humanos , Síndrome de Creutzfeldt-Jakob/complicaciones , Síndrome de Creutzfeldt-Jakob/diagnóstico , Síndrome de Creutzfeldt-Jakob/patología , Demencia/etiología , Demencia/diagnóstico , Enfermedades por Prión/diagnóstico , Enfermedades por Prión/patología , Enfermedades por Prión/complicaciones , Masculino , Anciano , Femenino , Progresión de la Enfermedad , Demencias Mixtas
20.
Cell Genom ; 2(12): None, 2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36530175

RESUMEN

Type 2 diabetes (T2D) is a heritable metabolic disorder. While population studies have identified hundreds of common genetic variants associated with T2D, the role of rare (frequency < 0.1%) protein-coding variation is less clear. We performed exome sequence analysis in 418,436 (n = 32,374 T2D cases) individuals in the UK Biobank. We identified previously reported genes (GCK, GIGYF1, HNF1A) in addition to missense variants in ZEB2 (n = 31 carriers; odds ratio [OR] = 5.5 [95% confidence interval = 2.5-12.0]; p = 6.4 × 10-7), MLXIPL (n = 245; OR = 2.3 [1.6-3.2]; p = 3.2 × 10-7), and IGF1R (n = 394; OR = 2.4 [1.8-3.2]; p = 1.3 × 10-10). Carriers of damaging missense variants within IGF1R were also shorter (-2.2 cm [-1.8 to -2.7]; p = 1.2 × 10-19) and had higher circulating insulin-like growth factor-1 (IGF-1) protein levels (2.3 nmol/L [1.7-2.9]; p = 2.8 × 10-14), indicating relative IGF-1 resistance. A likely causal role of IGF-1 resistance was supported by Mendelian randomization analyses using common variants. These results increase understanding of the genetic architecture of T2D and highlight the growth hormone/IGF-1 axis as a potential therapeutic target.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...