Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Protein Eng Des Sel ; 23(3): 115-27, 2010 Mar.
Article En | MEDLINE | ID: mdl-20022918

Bispecific antibodies (bsAbs) present an attractive opportunity to combine the additive and potentially synergistic effects exhibited by combinations of monoclonal antibodies (mAbs). Current challenges for engineering bsAbs include retention of the binding affinity of the parent mAb or antibody fragment, the ability to bind both targets simultaneously, and matching valency with biology. Other factors to consider include structural stability and expression of the recombinant molecule, both of which may have significant impact on its development as a therapeutic. Here, we incorporate selection of stable, potent single-chain variable fragments (scFvs) early in the engineering process to assemble bsAbs for therapeutic applications targeting the cytokines IL-17A/A and IL-23. Stable scFvs directed against human cytokines IL-23p19 and IL-17A/A were isolated from a human Fab phage display library via batch conversion of panning output from Fabs to scFvs. This strategy integrated a step for shuffling V regions during the conversion and permitted the rescue of scFv molecules in both the V(H)V(L) and the V(L)V(H) orientations. Stable scFvs were identified and assembled into several bispecific formats as fusions to the Fc domain of human IgG1. The engineered bsAbs are potent neutralizers of the biological activity of both cytokines (IC(50) < 1 nM), demonstrate the ability to bind both target ligands simultaneously and display stability and productivity advantageous for successful manufacture of a therapeutic molecule. Pharmacokinetic analysis of the bsAbs in mice revealed serum half-lives similar to human mAbs. Assembly of bispecific molecules using stable antibody fragments offers an alternative to reformatting mAbs and minimizes subsequent structure-related and manufacturing concerns.


Antibodies, Bispecific/genetics , Antibodies, Bispecific/immunology , Interleukin-17/immunology , Interleukin-23/immunology , Protein Engineering , Animals , Antibodies, Bispecific/chemistry , Antibodies, Bispecific/pharmacokinetics , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/immunology , Antibody Affinity , Databases, Protein , Escherichia coli/genetics , Female , Half-Life , Humans , Kinetics , Mice , Protein Stability , Single-Chain Antibodies/chemistry , Single-Chain Antibodies/genetics , Single-Chain Antibodies/immunology , Single-Chain Antibodies/metabolism
2.
Nat Immunol ; 5(7): 752-60, 2004 Jul.
Article En | MEDLINE | ID: mdl-15184896

T cell-derived cytokines are important in the development of an effective immune response, but when dysregulated they can promote disease. Here we identify a four-helix bundle cytokine we have called interleukin 31 (IL-31), which is preferentially produced by T helper type 2 cells. IL-31 signals through a receptor composed of IL-31 receptor A and oncostatin M receptor. Expression of IL-31 receptor A and oncostatin M receptor mRNA was induced in activated monocytes, whereas epithelial cells expressed both mRNAs constitutively. Transgenic mice overexpressing IL-31 developed severe pruritus, alopecia and skin lesions. Furthermore, IL-31 receptor expression was increased in diseased tissues derived from an animal model of airway hypersensitivity. These data indicate that IL-31 may be involved in promoting the dermatitis and epithelial responses that characterize allergic and non-allergic diseases.


Dermatitis/immunology , Dermatitis/pathology , Interleukins/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Amino Acid Sequence , Animals , Flow Cytometry , Gene Deletion , Gene Expression Profiling , Humans , Hypersensitivity/immunology , Hypersensitivity/pathology , Infusion Pumps, Implantable , Interleukins/chemistry , Interleukins/genetics , Interleukins/pharmacology , Lung/immunology , Lung/pathology , Lymphocyte Activation , Mice , Mice, Knockout , Mice, Transgenic , Molecular Sequence Data , Polymerase Chain Reaction , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptors, Cytokine/genetics , Receptors, Interleukin/chemistry , Receptors, Interleukin/genetics , Receptors, Interleukin/metabolism , Receptors, Oncostatin M , Transgenes/genetics , Up-Regulation
...