Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
medRxiv ; 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-39006410

RESUMEN

POPDC2 encodes for the Popeye domain-containing protein 2 which has an important role in cardiac pacemaking and conduction, due in part to its cAMP-dependent binding and regulation of TREK-1 potassium channels. Loss of Popdc2 in mice results in sinus pauses and bradycardia and morpholino knockdown of popdc2 in zebrafish results in atrioventricular (AV) block. We identified bi-allelic variants in POPDC2 in 4 families that presented with a phenotypic spectrum consisting of sinus node dysfunction, AV conduction defects and hypertrophic cardiomyopathy. Using homology modelling we show that the identified POPDC2 variants are predicted to diminish the ability of POPDC2 to bind cAMP. In in vitro electrophysiological studies we demonstrated that, while co-expression of wild-type POPDC2 with TREK-1 increased TREK-1 current density, POPDC2 variants found in the patients failed to increase TREK-1 current density. While patient muscle biopsy did not show clear myopathic disease, it showed significant reduction of the expression of both POPDC1 and POPDC2, suggesting that stability and/or membrane trafficking of the POPDC1-POPDC2 complex is impaired by pathogenic variants in any of the two proteins. Single-cell RNA sequencing from human hearts demonstrated that co-expression of POPDC1 and 2 was most prevalent in AV node, AV node pacemaker and AV bundle cells. Sinoatrial node cells expressed POPDC2 abundantly, but expression of POPDC1 was sparse. Together, these results concur with predisposition to AV node disease in humans with loss-of-function variants in POPDC1 and POPDC2 and presence of sinus node disease in POPDC2, but not in POPDC1 related disease in human. Using population-level genetic data of more than 1 million individuals we showed that none of the familial variants were associated with clinical outcomes in heterozygous state, suggesting that heterozygous family members are unlikely to develop clinical manifestations and therefore might not necessitate clinical follow-up. Our findings provide evidence for POPDC2 as the cause of a novel Mendelian autosomal recessive cardiac syndrome, consistent with previous work showing that mice and zebrafish deficient in functional POPDC2 display sinus and AV node dysfunction.

2.
Clin Genet ; 106(1): 37-46, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38424693

RESUMEN

Genetic missense variants in TNNI3K, encoding troponin-I interacting kinase, have been associated with dilated cardiomyopathy (DCM) and observed in families with supraventricular tachycardias (SVT). Previously, a family harboring the TNNI3K-c.1615A > G (p.Thr539Ala) variant presented with congenital junctional ectopic tachycardia (CJET), an arrhythmia that arises from the atrioventricular (AV) node and His bundle. However, this was a relatively small four-generational family with limited genetic testing (N = 3). We here describe a multigenerational family with CJET harboring a novel ultra-rare TNNI3K variant: TNNI3K-c.1729C > T (p.Leu577Phe). Of all 18 variant carriers, 13 individuals presented with CJET, resulting in a genetic penetrance of 72%. In addition, CJET is reported in another small family harboring TNNI3K-c.2225C > T (p.Pro742Leu). Similar to the previously published CJET family, both TNNI3K variants demonstrate a substantial reduction of kinase activity. Our study contributes novel evidence supporting the involvement of TNNI3K genetic variants as significant contributors to CJET, shedding light on potential mechanisms underlying this cardiac arrhythmia.


Asunto(s)
Linaje , Proteínas Serina-Treonina Quinasas , Taquicardia Ectópica de Unión , Humanos , Femenino , Masculino , Adulto , Taquicardia Ectópica de Unión/genética , Taquicardia Ectópica de Unión/fisiopatología , Proteínas Serina-Treonina Quinasas/genética , Persona de Mediana Edad , Predisposición Genética a la Enfermedad , Mutación Missense/genética , Adolescente , Niño , Adulto Joven
3.
Circ Genom Precis Med ; 16(4): 328-336, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37199186

RESUMEN

BACKGROUND: Genetic variants in TNNI3K (troponin-I interacting kinase) have previously been associated with dilated cardiomyopathy (DCM), cardiac conduction disease, and supraventricular tachycardias. However, the link between TNNI3K variants and these cardiac phenotypes shows a lack of consensus concerning phenotype and protein function. METHODS: We describe a systematic retrospective study of a cohort of patients undergoing genetic testing for cardiac arrhythmias and cardiomyopathy including TNNI3K. We further performed burden testing of TNNI3K in the UK Biobank. For 2 novel TNNI3K variants, we tested cosegregation. TNNI3K kinase function was estimated by TNNI3K autophosphorylation assays. RESULTS: We demonstrate enrichment of rare coding TNNI3K variants in DCM patients in the Amsterdam cohort. In the UK Biobank, we observed an association between TNNI3K missense (but not loss-of-function) variants and DCM and atrial fibrillation. Furthermore, we demonstrate genetic segregation for 2 rare variants, TNNI3K-p.Ile512Thr and TNNI3K-p.His592Tyr, with phenotypes consisting of DCM, cardiac conduction disease, and supraventricular tachycardia, together with increased autophosphorylation. In contrast, TNNI3K-p.Arg556_Asn590del, a likely benign variant, demonstrated depleted autophosphorylation. CONCLUSIONS: Our findings demonstrate an increased burden of rare coding TNNI3K variants in cardiac patients with DCM. Furthermore, we present 2 novel likely pathogenic TNNI3K variants with increased autophosphorylation, suggesting that enhanced autophosphorylation is likely to drive pathogenicity.


Asunto(s)
Cardiomiopatía Dilatada , Humanos , Cardiomiopatía Dilatada/diagnóstico , Cardiomiopatía Dilatada/genética , Estudios Retrospectivos , Arritmias Cardíacas/genética , Pruebas Genéticas , Trastorno del Sistema de Conducción Cardíaco/genética , Proteínas Serina-Treonina Quinasas/genética
4.
JAMA Netw Open ; 6(1): e2252724, 2023 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-36696110

RESUMEN

Importance: Sudden infant death syndrome (SIDS) remains a leading cause of death during the first year of life. The etiology of SIDS is complex and remains largely unknown. Objective: To evaluate whether siblings of children who died of SIDS have a higher risk of SIDS compared with the general pediatric population. Design, Setting, and Participants: This register-based cohort study used Danish nationwide registers. Participants were all infants (<1 year) in Denmark between January 1, 1978, and December 31, 2016, including siblings of children who died of SIDS. Siblings were followed up from the index cases' date of SIDS, date of birth, or immigration, whichever came first, and until age 1 year, emigration, developing SIDS, death, or study end. The median (IQR) follow-up was 1 (1-1) year. Data analysis was conducted from January 2017 to October 2022. Main Outcomes and Measures: Standardized incidence ratios (SIRs) of SIDS were calculated with Poisson regression models relative to the general population. Results: In a population of 2 666 834 consecutive births (1 395 199 [52%] male), 1540 infants died of SIDS (median [IQR] age at SIDS, 3 [2-4] months) during a 39-year study period. A total of 2384 younger siblings (cases) to index cases (first sibling with SIDS) were identified. A higher rate of SIDS was observed among siblings compared with the general population, with SIRs of 4.27 (95% CI, 2.13-8.53) after adjustment for sex, age, and calendar year and of 3.50 (95% CI, 1.75-7.01) after further adjustment for mother's age (<29 years vs ≥29 years) and education (high school vs after high school). Conclusions and Relevance: In this nationwide study, having a sibling who died of SIDS was associated with a 4-fold higher risk of SIDS compared with the general population. Shared genetic and/or environmental factors may contribute to the observed clustering of SIDS. The family history of SIDS should be considered when assessing SIDS risk in clinical settings. A multidisciplinary genetic evaluation of families with SIDS could provide additional evidence.


Asunto(s)
Hermanos , Muerte Súbita del Lactante , Lactante , Femenino , Humanos , Niño , Masculino , Adulto , Muerte Súbita del Lactante/epidemiología , Muerte Súbita del Lactante/etiología , Estudios de Cohortes , Factores de Riesgo , Dinamarca/epidemiología
5.
Hum Mol Genet ; 32(7): 1072-1082, 2023 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-36269083

RESUMEN

BACKGROUND: Variants in KCNH2, encoding the human ether a-go-go (hERG) channel that is responsible for the rapid component of the cardiac delayed rectifier K+ current (IKr), are causal to long QT syndrome type 2 (LQTS2). We identified eight index patients with a new variant of unknown significance (VUS), KCNH2:c.2717C > T:p.(Ser906Leu). We aimed to elucidate the biophysiological effect of this variant, to enable reclassification and consequent clinical decision-making. METHODS: A genotype-phenotype overview of the patients and relatives was created. The biophysiological effects were assessed independently by manual-, and automated calibrated patch clamp. HEK293a cells expressing (i) wild-type (WT) KCNH2, (ii) KCNH2-p.S906L alone (homozygous, Hm) or (iii) KCNH2-p.S906L in combination with WT (1:1) (heterozygous, Hz) were used for manual patching. Automated patch clamp measured the variants function against known benign and pathogenic variants, using Flp-In T-rex HEK293 KCNH2-variant cell lines. RESULTS: Incomplete penetrance of LQTS2 in KCNH2:p.(Ser906Leu) carriers was observed. In addition, some patients were heterozygous for other VUSs in CACNA1C, PKP2, RYR2 or AKAP9. The phenotype of carriers of KCNH2:p.(Ser906Leu) ranged from asymptomatic to life-threatening arrhythmic events. Manual patch clamp showed a reduced current density by 69.8 and 60.4% in KCNH2-p.S906L-Hm and KCNH2-p.S906L-Hz, respectively. The time constant of activation was significantly increased with 80.1% in KCNH2-p.S906L-Hm compared with KCNH2-WT. Assessment of KCNH2-p.S906L-Hz by calibrated automatic patch clamp assay showed a reduction in current density by 35.6%. CONCLUSION: The reduced current density in the KCNH2-p.S906L-Hz indicates a moderate loss-of-function. Combined with the reduced penetrance and variable phenotype, we conclude that KCNH2:p.(Ser906Leu) is a low penetrant likely pathogenic variant for LQTS2.


Asunto(s)
Síndrome de QT Prolongado , Humanos , Síndrome de QT Prolongado/genética , Síndrome de QT Prolongado/metabolismo , Canales de Potasio Éter-A-Go-Go/genética , Células HEK293 , Penetrancia , Corazón , Canal de Potasio ERG1/genética
6.
J Pathol ; 257(2): 239-249, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35143042

RESUMEN

Around 15-30% of colorectal cancers (CRC) develop from sessile serrated lesions (SSLs). After many years of indolent growth, SSLs can develop dysplasia and rapidly progress to CRC through events that are only partially understood. We studied molecular events at the very early stages of progression of SSLs via the MLH1-proficient and deficient pathways to CRC. We collected a cohort of rare SSLs with a small focus (<10 mm) of dysplasia or cancer from the pathology archives of three hospitals. Whole-exome sequencing was performed on DNA from nonprogressed and progressed components of each SSL. Putative somatic driver mutations were identified in known cancer genes that were differentially mutated in the progressed component. All analyses were stratified by MLH1 proficiency. Forty-five lesions with a focus dysplasia or cancer were included, of which 22 (49%) were MLH1-deficient. Lesions had a median diameter of 10 mm (interquartile range [IQR] 8-15), while the progressed component had a median diameter of 3.5 mm (IQR 1.75-4.75). Tumor mutational burden (TMB) was high in MLH1-deficient lesions (23.9 mutations per MB) as compared to MLH1-proficient lesions (6.3 mutations per MB). We identified 34 recurrently mutated genes in MLH1-deficient lesions. Most prominently, ACVR2A and RNF43 were affected in 18/22 lesions, with mutations clustered in three hotspots. Most lesions with RNF43 mutations had concurrent mutations in ZNRF3. In MLH1-proficient lesions APC (10/23 lesions) and TP53 (6/23 lesions) were recurrently mutated. Our results show that the mutational burden is exceptionally high even in the earliest MLH1-deficient lesions. We demonstrate that hotspot mutations in ACVR2A and in the RNF43/ZNRF3 complex are extremely common in the early progression of SSLs along the MLH1-deficient serrated pathway, while APC and TP53 mutations are early events in the the MLH1-proficient pathway. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Asunto(s)
Neoplasias Colorrectales , Proteínas Proto-Oncogénicas B-raf , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Exoma/genética , Humanos , Hiperplasia , Mutación , Recurrencia Local de Neoplasia/genética , Proteínas Proto-Oncogénicas B-raf/genética , Secuenciación del Exoma
7.
Circ Res ; 130(2): 166-180, 2022 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-34886679

RESUMEN

RATIONALE: Dextro-transposition of the great arteries (D-TGA) is a severe congenital heart defect which affects approximately 1 in 4,000 live births. While there are several reports of D-TGA patients with rare variants in individual genes, the majority of D-TGA cases remain genetically elusive. Familial recurrence patterns and the observation that most cases with D-TGA are sporadic suggest a polygenic inheritance for the disorder, yet this remains unexplored. OBJECTIVE: We sought to study the role of common single nucleotide polymorphisms (SNPs) in risk for D-TGA. METHODS AND RESULTS: We conducted a genome-wide association study in an international set of 1,237 patients with D-TGA and identified a genome-wide significant susceptibility locus on chromosome 3p14.3, which was subsequently replicated in an independent case-control set (rs56219800, meta-analysis P=8.6x10-10, OR=0.69 per C allele). SNP-based heritability analysis showed that 25% of variance in susceptibility to D-TGA may be explained by common variants. A genome-wide polygenic risk score derived from the discovery set was significantly associated to D-TGA in the replication set (P=4x10-5). The genome-wide significant locus (3p14.3) co-localizes with a putative regulatory element that interacts with the promoter of WNT5A, which encodes the Wnt Family Member 5A protein known for its role in cardiac development in mice. We show that this element drives reporter gene activity in the developing heart of mice and zebrafish and is bound by the developmental transcription factor TBX20. We further demonstrate that TBX20 attenuates Wnt5a expression levels in the developing mouse heart. CONCLUSIONS: This work provides support for a polygenic architecture in D-TGA and identifies a susceptibility locus on chromosome 3p14.3 near WNT5A. Genomic and functional data support a causal role of WNT5A at the locus.


Asunto(s)
Polimorfismo de Nucleótido Simple , Transposición de los Grandes Vasos/genética , Animales , Células Cultivadas , Humanos , Ratones , Herencia Multifactorial , Miocitos Cardíacos/metabolismo , Proteínas de Dominio T Box/genética , Proteínas de Dominio T Box/metabolismo , Transposición de los Grandes Vasos/metabolismo , Proteína Wnt-5a/genética , Proteína Wnt-5a/metabolismo , Pez Cebra
9.
Int J Mol Sci ; 22(12)2021 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-34203974

RESUMEN

In the two decades since the discovery of TNNI3K it has been implicated in multiple cardiac phenotypes and physiological processes. TNNI3K is an understudied kinase, which is mainly expressed in the heart. Human genetic variants in TNNI3K are associated with supraventricular arrhythmias, conduction disease, and cardiomyopathy. Furthermore, studies in mice implicate the gene in cardiac hypertrophy, cardiac regeneration, and recovery after ischemia/reperfusion injury. Several new papers on TNNI3K have been published since the last overview, broadening the clinical perspective of TNNI3K variants and our understanding of the underlying molecular biology. We here provide an overview of the role of TNNI3K in cardiomyopathy and arrhythmia covering both a clinical perspective and basic science advancements. In addition, we review the potential of TNNI3K as a target for clinical treatments in different cardiac diseases.


Asunto(s)
Cardiopatías/enzimología , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Modelos Animales de Enfermedad , Cardiopatías/genética , Cardiopatías/patología , Cardiopatías/fisiopatología , Humanos , Terapia Molecular Dirigida , Proteínas Serina-Treonina Quinasas/genética , Regeneración
11.
Genet Med ; 23(10): 1952-1960, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34113005

RESUMEN

PURPOSE: Rare genetic variants in KDR, encoding the vascular endothelial growth factor receptor 2 (VEGFR2), have been reported in patients with tetralogy of Fallot (TOF). However, their role in disease causality and pathogenesis remains unclear. METHODS: We conducted exome sequencing in a familial case of TOF and large-scale genetic studies, including burden testing, in >1,500 patients with TOF. We studied gene-targeted mice and conducted cell-based assays to explore the role of KDR genetic variation in the etiology of TOF. RESULTS: Exome sequencing in a family with two siblings affected by TOF revealed biallelic missense variants in KDR. Studies in knock-in mice and in HEK 293T cells identified embryonic lethality for one variant when occurring in the homozygous state, and a significantly reduced VEGFR2 phosphorylation for both variants. Rare variant burden analysis conducted in a set of 1,569 patients of European descent with TOF identified a 46-fold enrichment of protein-truncating variants (PTVs) in TOF cases compared to controls (P = 7 × 10-11). CONCLUSION: Rare KDR variants, in particular PTVs, strongly associate with TOF, likely in the setting of different inheritance patterns. Supported by genetic and in vivo and in vitro functional analysis, we propose loss-of-function of VEGFR2 as one of the mechanisms involved in the pathogenesis of TOF.


Asunto(s)
Tetralogía de Fallot , Receptor 2 de Factores de Crecimiento Endotelial Vascular , Animales , Predisposición Genética a la Enfermedad , Células HEK293 , Humanos , Ratones , Tetralogía de Fallot/genética , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética , Secuenciación del Exoma
12.
Sci Rep ; 11(1): 9779, 2021 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-33963238

RESUMEN

Duchenne muscular dystrophy (DMD) is a progressive neuromuscular disorder caused by loss of dystrophin. This lack also affects cardiac structure and function, and cardiovascular complications are a major cause of death in DMD. Newly developed therapies partially restore dystrophin expression. It is unclear whether this will be sufficient to prevent or ameliorate cardiac involvement in DMD. We here establish the cardiac electrophysiological and structural phenotype in young (2-3 months) and aged (6-13 months) dystrophin-deficient mdx mice expressing 100% human dystrophin (hDMD), 0% human dystrophin (hDMDdel52-null) or low levels (~ 5%) of human dystrophin (hDMDdel52-low). Compared to hDMD, young and aged hDMDdel52-null mice displayed conduction slowing and repolarisation abnormalities, while only aged hDMDdel52-null mice displayed increased myocardial fibrosis. Moreover, ventricular cardiomyocytes from young hDMDdel52-null animals displayed decreased sodium current and action potential (AP) upstroke velocity, and prolonged AP duration at 20% and 50% of repolarisation. Hence, cardiac electrical remodelling in hDMDdel52-null mice preceded development of structural alterations. In contrast to hDMDdel52-null, hDMDdel52-low mice showed similar electrophysiological and structural characteristics as hDMD, indicating prevention of the cardiac DMD phenotype by low levels of human dystrophin. Our findings are potentially relevant for the development of therapeutic strategies aimed at restoring dystrophin expression in DMD.


Asunto(s)
Electrofisiología Cardíaca , Distrofina , Distrofia Muscular de Duchenne , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Animales , Distrofina/genética , Distrofina/metabolismo , Ratones , Ratones Endogámicos mdx , Ratones Transgénicos , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/fisiopatología
13.
J Clin Invest ; 131(5)2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33645542

RESUMEN

Congenital heart disease is the most common type of birth defect, accounting for one-third of all congenital anomalies. Using whole-exome sequencing of 2718 patients with congenital heart disease and a search in GeneMatcher, we identified 30 patients from 21 unrelated families of different ancestries with biallelic phospholipase D1 (PLD1) variants who presented predominantly with congenital cardiac valve defects. We also associated recessive PLD1 variants with isolated neonatal cardiomyopathy. Furthermore, we established that p.I668F is a founder variant among Ashkenazi Jews (allele frequency of ~2%) and describe the phenotypic spectrum of PLD1-associated congenital heart defects. PLD1 missense variants were overrepresented in regions of the protein critical for catalytic activity, and, correspondingly, we observed a strong reduction in enzymatic activity for most of the mutant proteins in an enzymatic assay. Finally, we demonstrate that PLD1 inhibition decreased endothelial-mesenchymal transition, an established pivotal early step in valvulogenesis. In conclusion, our study provides a more detailed understanding of disease mechanisms and phenotypic expression associated with PLD1 loss of function.


Asunto(s)
Alelos , Cardiopatías Congénitas , Enfermedades de las Válvulas Cardíacas , Mutación con Pérdida de Función , Fosfolipasa D , Femenino , Cardiopatías Congénitas/enzimología , Cardiopatías Congénitas/genética , Enfermedades de las Válvulas Cardíacas/enzimología , Enfermedades de las Válvulas Cardíacas/genética , Humanos , Masculino , Fosfolipasa D/genética , Fosfolipasa D/metabolismo
14.
Open Heart ; 8(1)2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33547224

RESUMEN

INTRODUCTION: Early recognition of individuals with increased risk of sudden cardiac arrest (SCA) remains challenging. SCA research so far has used data from cardiologist care, but missed most SCA victims, since they were only in general practitioner (GP) care prior to SCA. Studying individuals with type 2 diabetes (T2D) in GP care may help solve this problem, as they have increased risk for SCA, and rich clinical datasets, since they regularly visit their GP for check-up measurements. This information can be further enriched with extensive genetic and metabolic information. AIM: To describe the study protocol of the REcognition of Sudden Cardiac arrest vUlnErability in Diabetes (RESCUED) project, which aims at identifying clinical, genetic and metabolic factors contributing to SCA risk in individuals with T2D, and to develop a prognostic model for the risk of SCA. METHODS: The RESCUED project combines data from dedicated SCA and T2D cohorts, and GP data, from the same region in the Netherlands. Clinical data, genetic data (common and rare variant analysis) and metabolic data (metabolomics) will be analysed (using classical analysis techniques and machine learning methods) and combined into a prognostic model for risk of SCA. CONCLUSION: The RESCUED project is designed to increase our ability at early recognition of elevated SCA risk through an innovative strategy of focusing on GP data and a multidimensional methodology including clinical, genetic and metabolic analyses.


Asunto(s)
Muerte Súbita Cardíaca/epidemiología , Diabetes Mellitus/mortalidad , Muerte Súbita Cardíaca/etiología , Estudios de Seguimiento , Humanos , Países Bajos/epidemiología , Estudios Retrospectivos , Tasa de Supervivencia/tendencias
15.
Genet Med ; 23(5): 856-864, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33500567

RESUMEN

PURPOSE: To characterize the genetic architecture of left ventricular noncompaction (LVNC) and investigate the extent to which it may represent a distinct pathology or a secondary phenotype associated with other cardiac diseases. METHODS: We performed rare variant association analysis with 840 LVNC cases and 125,748 gnomAD population controls, and compared results to similar analyses on dilated cardiomyopathy (DCM) and hypertrophic cardiomyopathy (HCM). RESULTS: We observed substantial genetic overlap indicating that LVNC often represents a phenotypic variation of DCM or HCM. In contrast, truncating variants in MYH7, ACTN2, and PRDM16 were uniquely associated with LVNC and may reflect a distinct LVNC etiology. In particular, MYH7 truncating variants (MYH7tv), generally considered nonpathogenic for cardiomyopathies, were 20-fold enriched in LVNC cases over controls. MYH7tv heterozygotes identified in the UK Biobank and healthy volunteer cohorts also displayed significantly greater noncompaction compared with matched controls. RYR2 exon deletions and HCN4 transmembrane variants were also enriched in LVNC, supporting prior reports of association with arrhythmogenic LVNC phenotypes. CONCLUSION: LVNC is characterized by substantial genetic overlap with DCM/HCM but is also associated with distinct noncompaction and arrhythmia etiologies. These results will enable enhanced application of LVNC genetic testing and help to distinguish pathological from physiological noncompaction.


Asunto(s)
Cardiomiopatías , Cardiomiopatía Dilatada , Cardiomiopatía Hipertrófica , Cardiopatías Congénitas , Cardiomiopatías/genética , Cardiomiopatía Dilatada/genética , Pruebas Genéticas , Humanos
16.
Europace ; 23(5): 775-780, 2021 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-33324992

RESUMEN

AIMS: The early repolarization syndrome (ERS) can cause ventricular fibrillation (VF) and sudden death in young, otherwise healthy individuals. There are limited data suggesting that ERS might be heritable. The aim of this study was to characterize the clinical phenotype and to identify a causal variant in an affected family using an exome-sequencing approach. METHODS AND RESULTS: Early repolarization syndrome was diagnosed according to the recently proposed Shanghai ERS Score. After sequencing of known ERS candidate genes, whole-exome sequencing (WES) was performed. The index patient (23 years, female) showed a dynamic inferolateral early repolarization (ER) pattern and electrical storm with intractable VF. Isoproterenol enabled successful termination of electrical storm with no recurrence on hydroquinidine therapy during 33 months of follow-up. The index patient's brother (25 years) had a persistent inferior ER pattern with malignant features and a history of syncope. Both parents were asymptomatic and showed no ER pattern. While there was no pathogenic variant in candidate genes, WES detected a novel missense variant affecting a highly conserved residue (p. H2245R) in the ANK3 gene encoding Ankyrin-G in the two siblings and the father. CONCLUSION: We identified two siblings with a malignant ERS phenotype sharing a novel ANK3 variant. A potentially pathogenic role of the novel ANK3 variant is suggested by the direct interaction of Ankyrin-G with the cardiac sodium channel, however, more patients with ANK3 variants and ERS would be required to establish ANK3 as novel ERS susceptibility gene. Our study provides additional evidence that ERS might be a heritable condition.


Asunto(s)
Electrocardiografía , Hermanos , Adulto , China , Femenino , Humanos , Masculino , Fibrilación Ventricular/diagnóstico , Fibrilación Ventricular/genética , Secuenciación del Exoma , Adulto Joven
18.
PLoS One ; 15(11): e0242167, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33201890

RESUMEN

Esophageal atresia (EA) and tracheoesophageal fistula (TEF) are relatively frequently occurring foregut malformations. EA/TEF is thought to have a strong genetic component. Not much is known regarding the biological processes disturbed or which cell type is affected in patients. This hampers the detection of the responsible culprits (genetic or environmental) for the origin of these congenital anatomical malformations. Therefore, we examined gene expression patterns in the TEF and compared them to the patterns in esophageal, tracheal and lung control samples. We studied tissue organization and key proteins using immunohistochemistry. There were clear differences between TEF and control samples. Based on the number of differentially expressed genes as well as histological characteristics, TEFs were most similar to normal esophagus. The BMP-signaling pathway, actin cytoskeleton and extracellular matrix pathways are downregulated in TEF. Genes involved in smooth muscle contraction are overexpressed in TEF compared to esophagus as well as trachea. These enriched pathways indicate myofibroblast activated fibrosis. TEF represents a specific tissue type with large contributions of intestinal smooth muscle cells and neurons. All major cell types present in esophagus are present-albeit often structurally disorganized-in TEF, indicating that its etiology should not be sought in cell fate specification.


Asunto(s)
Fístula Traqueoesofágica/metabolismo , Transcriptoma , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/metabolismo , Adulto , Proteínas Morfogenéticas Óseas/genética , Proteínas Morfogenéticas Óseas/metabolismo , Esófago/metabolismo , Esófago/patología , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Femenino , Fibrosis , Humanos , Pulmón/metabolismo , Masculino , Transducción de Señal , Tráquea/metabolismo , Fístula Traqueoesofágica/genética , Fístula Traqueoesofágica/patología
19.
Front Physiol ; 11: 557, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32536879

RESUMEN

Genome Wide Association Studies (GWAS) have provided an enormous amount of data on genomic loci associated with cardiac electrophysiology and arrhythmias. Clinical relevance, however, remains unclear since GWAS do not provide a mechanistic explanation for this association. Determining the electrophysiological relevance of variants for arrhythmias would aid development of risk stratification models for patients with arrhythmias. In this review, we give an overview of genetic variants related to ECG intervals and arrhythmogenic pathologies and discuss how these variants may influence cardiac electrophysiology and the occurrence of arrhythmias.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...