Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 11 de 11
1.
J Anat ; 244(2): 358-367, 2024 02.
Article En | MEDLINE | ID: mdl-37794731

The primary cilium is an essential organelle that is important for normal cell signalling during development and homeostasis but its role in pituitary development has not been reported. The primary cilium facilitates signal transduction for multiple pathways, the best-characterised being the SHH pathway, which is known to be necessary for correct pituitary gland development. FUZ is a planar cell polarity (PCP) effector that is essential for normal ciliogenesis, where the primary cilia of Fuz-/- mutants are shorter or non-functional. FUZ is part of a group of proteins required for recruiting retrograde intraflagellar transport proteins to the base of the organelle. Previous work has reported ciliopathy phenotypes in Fuz-/- homozygous null mouse mutants, including neural tube defects, craniofacial abnormalities, and polydactyly, alongside PCP defects including kinked/curly tails and heart defects. Interestingly, the pituitary gland was reported to be missing in Fuz-/- mutants at 14.5 dpc but the mechanisms underlying this phenotype were not investigated. Here, we have analysed the pituitary development of Fuz-/- mutants. Histological analyses reveal that Rathke's pouch (RP) is initially induced normally but is not specified and fails to express LHX3, resulting in hypoplasia and apoptosis. Characterisation of SHH signalling reveals reduced pathway activation in Fuz-/- mutant relative to control embryos, leading to deficient specification of anterior pituitary fate. Analyses of the key developmental signals FGF8 and BMP4, which are influenced by SHH, reveal abnormal patterning in the ventral diencephalon, contributing further to abnormal RP development. Taken together, our analyses suggest that primary cilia are required for normal pituitary specification through SHH signalling.


Cell Polarity , Cilia , Animals , Mice , Cilia/physiology , Hedgehog Proteins/metabolism , Mice, Knockout , Pituitary Gland/metabolism , Proteins/metabolism
2.
Cell Mol Life Sci ; 79(12): 612, 2022 Dec 01.
Article En | MEDLINE | ID: mdl-36451046

Stem cells in the anterior pituitary gland can give rise to all resident endocrine cells and are integral components for the appropriate development and subsequent maintenance of the organ. Located in discreet niches within the gland, stem cells are involved in bi-directional signalling with their surrounding neighbours, interactions which underpin pituitary gland homeostasis and response to organ challenge or physiological demand. In this review we highlight core signalling pathways that steer pituitary progenitors towards specific endocrine fate decisions throughout development. We further elaborate on those which are conserved in the stem cell niche postnatally, including WNT, YAP/TAZ and Notch signalling. Furthermore, we have collated a directory of single cell RNA sequencing studies carried out on pituitaries across multiple organisms, which have the potential to provide a vast database to study stem cell niche components in an unbiased manner. Reviewing published data, we highlight that stem cells are one of the main signalling hubs within the anterior pituitary. In future, coupling single cell sequencing approaches with genetic manipulation tools in vivo, will enable elucidation of how previously understudied signalling pathways function within the anterior pituitary stem cell niche.


Pituitary Diseases , Stem Cell Niche , Humans , Stem Cell Niche/genetics , Pituitary Gland , Cell Communication , Signal Transduction
3.
Elife ; 102021 01 05.
Article En | MEDLINE | ID: mdl-33399538

In response to physiological demand, the pituitary gland generates new hormone-secreting cells from committed progenitor cells throughout life. It remains unclear to what extent pituitary stem cells (PSCs), which uniquely express SOX2, contribute to pituitary growth and renewal. Moreover, neither the signals that drive proliferation nor their sources have been elucidated. We have used genetic approaches in the mouse, showing that the WNT pathway is essential for proliferation of all lineages in the gland. We reveal that SOX2+ stem cells are a key source of WNT ligands. By blocking secretion of WNTs from SOX2+ PSCs in vivo, we demonstrate that proliferation of neighbouring committed progenitor cells declines, demonstrating that progenitor multiplication depends on the paracrine WNT secretion from SOX2+ PSCs. Our results indicate that stem cells can hold additional roles in tissue expansion and homeostasis, acting as paracrine signalling centres to coordinate the proliferation of neighbouring cells.


Paracrine Communication , Pituitary Gland/physiology , Stem Cells/physiology , Wnt Signaling Pathway , Animals , Cell Differentiation , Cell Proliferation , Female , Male , Mice
4.
JCI Insight ; 5(23)2020 10 27.
Article En | MEDLINE | ID: mdl-33108146

Pituitary developmental defects lead to partial or complete hormone deficiency and significant health problems. The majority of cases are sporadic and of unknown cause. We screened 28 patients with pituitary stalk interruption syndrome (PSIS) for mutations in the FAT/DCHS family of protocadherins that have high functional redundancy. We identified seven variants, four of which putatively damaging, in FAT2 and DCHS2 in six patients with pituitary developmental defects recruited through a cohort of patients with mostly ectopic posterior pituitary gland and/or pituitary stalk interruption. All patients had growth hormone deficiency and two presented with multiple hormone deficiencies and small glands. FAT2 and DCHS2 were strongly expressed in the mesenchyme surrounding the normal developing human pituitary. We analyzed Dchs2-/- mouse mutants and identified anterior pituitary hypoplasia and partially penetrant infundibular defects. Overlapping infundibular abnormalities and distinct anterior pituitary morphogenesis defects were observed in Fat4-/- and Dchs1-/- mouse mutants but all animal models displayed normal commitment to the anterior pituitary cell type. Together our data implicate FAT/DCHS protocadherins in normal hypothalamic-pituitary development and identify FAT2 and DCHS2 as candidates underlying pituitary gland developmental defects such as ectopic pituitary gland and/or pituitary stalk interruption.


Cadherin Related Proteins/genetics , Cadherins/genetics , Pituitary Diseases/genetics , Adolescent , Animals , Cadherin Related Proteins/metabolism , Cadherins/metabolism , Female , Humans , Hypothalamus/growth & development , Hypothalamus/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mutation , Pituitary Gland/growth & development , Pituitary Gland/metabolism , Young Adult
5.
Elife ; 82019 03 26.
Article En | MEDLINE | ID: mdl-30912742

SOX2 positive pituitary stem cells (PSCs) are specified embryonically and persist throughout life, giving rise to all pituitary endocrine lineages. We have previously shown the activation of the STK/LATS/YAP/TAZ signalling cascade in the developing and postnatal mammalian pituitary. Here, we investigate the function of this pathway during pituitary development and in the regulation of the SOX2 cell compartment. Through loss- and gain-of-function genetic approaches, we reveal that restricting YAP/TAZ activation during development is essential for normal organ size and specification from SOX2+ PSCs. Postnatal deletion of LATS kinases and subsequent upregulation of YAP/TAZ leads to uncontrolled clonal expansion of the SOX2+ PSCs and disruption of their differentiation, causing the formation of non-secreting, aggressive pituitary tumours. In contrast, sustained expression of YAP alone results in expansion of SOX2+ PSCs capable of differentiation and devoid of tumourigenic potential. Our findings identify the LATS/YAP/TAZ signalling cascade as an essential component of PSC regulation in normal pituitary physiology and tumourigenesis.


Adaptor Proteins, Signal Transducing/metabolism , Cell Cycle Proteins/metabolism , Cell Proliferation , Pituitary Gland/cytology , Protein Serine-Threonine Kinases/metabolism , Signal Transduction , Stem Cells/physiology , Trans-Activators/metabolism , Tumor Suppressor Proteins/metabolism , Animals , Gene Deletion , Gene Regulatory Networks , Mice , Pituitary Gland/embryology , Pituitary Gland/growth & development , SOXB1 Transcription Factors/analysis , Stem Cells/chemistry , YAP-Signaling Proteins
6.
Endocr Relat Cancer ; 26(1): 215-225, 2019 01 01.
Article En | MEDLINE | ID: mdl-30139767

Tumours of the anterior pituitary can manifest from all endocrine cell types but the mechanisms for determining their specification are not known. The Hippo kinase cascade is a crucial signalling pathway regulating growth and cell fate in numerous organs. There is mounting evidence implicating this in tumour formation, where it is emerging as an anti-cancer target. We previously demonstrated activity of the Hippo kinase cascade in the mouse pituitary and nuclear association of its effectors YAP/TAZ with SOX2-expressing pituitary stem cells. Here, we sought to investigate whether these components are expressed in the human pituitary and if they are deregulated in human pituitary tumours. Analysis of pathway components by immunofluorescence reveals pathway activity during normal human pituitary development and in the adult gland. Poorly differentiated pituitary tumours (null-cell adenomas, adamantinomatous craniopharyngiomas (ACPs) and papillary craniopharyngiomas (PCPs)), displayed enhanced expression of pathway effectors YAP/TAZ. In contrast, differentiated adenomas displayed lower or absent levels. Knockdown of the kinase-encoding Lats1 in GH3 rat mammosomatotropinoma cells suppressed Prl and Gh promoter activity following an increase in YAP/TAZ levels. In conclusion, we have demonstrated activity of the Hippo kinase cascade in the human pituitary and association of high YAP/TAZ with repression of the differentiated state both in vitro and in vivo. Characterisation of this pathway in pituitary tumours is of potential prognostic value, opening up putative avenues for treatments.


Adaptor Proteins, Signal Transducing/metabolism , Apoptosis Regulatory Proteins/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Pituitary Gland/metabolism , Pituitary Neoplasms/metabolism , Trans-Activators/metabolism , Transcription Factors/metabolism , Aged , Aged, 80 and over , Animals , Cell Line, Tumor , Female , Humans , Male , Pituitary Neoplasms/genetics , Protein Serine-Threonine Kinases/genetics , RNA Interference , Rats , Transcriptional Coactivator with PDZ-Binding Motif Proteins , YAP-Signaling Proteins
7.
Neuroendocrinology ; 107(2): 196-203, 2018.
Article En | MEDLINE | ID: mdl-29539624

As a central regulator of major physiological processes, the pituitary gland is a highly dynamic organ, capable of responding to hormonal demand and hypothalamic influence, through adapting secretion as well as remodelling cell numbers among its seven populations of differentiated cells. Stem cells of the pituitary have been shown to actively generate new cells during postnatal development but remain mostly quiescent during adulthood, where they persist as a long-lived population. Despite a significant body of research characterising attributes of anterior pituitary stem cells, the regulation of this population is poorly understood. A better grasp on the signalling mechanisms influencing stem proliferation and cell fate decisions can impact on our future treatments of pituitary gland disorders such as organ failure and pituitary tumours, which can disrupt endocrine homeostasis with life-long consequences. This minireview addresses the current methodologies aiming to understand better the attributes of pituitary stem cells and the normal regulation of this population in the organ, and discusses putative future avenues to manipulate pituitary stem cells during disease states or regenerative medicine approaches.


Pituitary Gland , Stem Cells , Animals , Humans
8.
Nat Commun ; 8(1): 1289, 2017 11 03.
Article En | MEDLINE | ID: mdl-29097701

Familial growth hormone deficiency provides an opportunity to identify new genetic causes of short stature. Here we combine linkage analysis with whole-genome resequencing in patients with growth hormone deficiency and maternally inherited gingival fibromatosis. We report that patients from three unrelated families harbor either of two missense mutations, c.347G>T p.(Arg116Leu) or c.1106C>T p.(Pro369Leu), in KCNQ1, a gene previously implicated in the long QT interval syndrome. Kcnq1 is expressed in hypothalamic GHRH neurons and pituitary somatotropes. Co-expressing KCNQ1 with the KCNE2 ß-subunit shows that both KCNQ1 mutants increase current levels in patch clamp analyses and are associated with reduced pituitary hormone secretion from AtT-20 cells. In conclusion, our results reveal a role for the KCNQ1 potassium channel in the regulation of human growth, and show that growth hormone deficiency associated with maternally inherited gingival fibromatosis is an allelic disorder with cardiac arrhythmia syndromes caused by KCNQ1 mutations.


Fibromatosis, Gingival/genetics , Human Growth Hormone/deficiency , KCNQ1 Potassium Channel/genetics , Mutation, Missense , Adolescent , Adrenocorticotropic Hormone/metabolism , Adult , Alleles , Amino Acid Substitution , Animals , Arrhythmias, Cardiac/genetics , Child , Child, Preschool , Female , Fibromatosis, Gingival/metabolism , Humans , KCNQ1 Potassium Channel/chemistry , KCNQ1 Potassium Channel/metabolism , Male , Maternal Inheritance/genetics , Mice , Middle Aged , Models, Molecular , Pedigree , Protein Interaction Maps , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Young Adult
9.
Development ; 144(18): 3289-3302, 2017 09 15.
Article En | MEDLINE | ID: mdl-28807898

Sonic hedgehog (SHH) is an essential morphogenetic signal that dictates cell fate decisions in several developing organs in mammals. In vitro data suggest that SHH is required to specify LHX3+/LHX4+ Rathke's pouch (RP) progenitor identity. However, in vivo studies have failed to reveal such a function, supporting instead a crucial role for SHH in promoting proliferation of these RP progenitors and for differentiation of pituitary cell types. Here, we have used a genetic approach to demonstrate that activation of the SHH pathway is necessary to induce LHX3+/LHX4+ RP identity in mouse embryos. First, we show that conditional deletion of Shh in the anterior hypothalamus results in a fully penetrant phenotype characterised by a complete arrest of RP development, with lack of Lhx3/Lhx4 expression in RP epithelium at 9.0 days post coitum (dpc) and total loss of pituitary tissue by 12.5 dpc. Conversely, overactivation of the SHH pathway by conditional deletion of Ptch1 in RP progenitors leads to severe hyperplasia and enlargement of the Sox2+ stem cell compartment by the end of gestation.


Cell Lineage , Hedgehog Proteins/metabolism , Hypothalamus/embryology , Hypothalamus/metabolism , LIM-Homeodomain Proteins/metabolism , Pituitary Gland/embryology , Pituitary Gland/metabolism , Transcription Factors/metabolism , Cell Compartmentation , Cell Count , Cell Differentiation , Cell Proliferation , Clone Cells , Crosses, Genetic , Ectoderm/embryology , Ectoderm/metabolism , Embryo, Mammalian/metabolism , Endoderm/embryology , Endoderm/metabolism , Epithelium/embryology , Epithelium/metabolism , Female , Gene Expression Regulation, Developmental , Genotype , Hedgehog Proteins/genetics , Humans , Male , Mutation/genetics , Pituitary Gland/pathology , Signal Transduction , Stem Cells
10.
Exp Eye Res ; 149: 26-39, 2016 08.
Article En | MEDLINE | ID: mdl-27235794

We investigated the corneal morphology of adult Mp/+ mice, which are heterozygous for the micropinna microphthalmia mutation, and identified several abnormalities, which implied that corneal epithelial maintenance was abnormal. The Mp/+ corneal epithelium was thin, loosely packed and contained goblet cells in older mice. Evidence also suggested that the barrier function was compromised. However, there was no major effect on corneal epithelial cell turnover and mosaic patterns of radial stripes indicated that radial cell movement was normal. Limbal blood vessels formed an abnormally wide limbal vasculature ring, K19-positive cells were distributed more widely than normal and K12 was weakly expressed in the peripheral cornea. This raises the possibilities that the limbal-corneal boundary was poorly defined or the limbus was wider than normal. BrdU label-retaining cell numbers and quantitative clonal analysis suggested that limbal epithelial stem cell numbers were not depleted and might be higher than normal. However, as corneal epithelial homeostasis was abnormal, it is possible that Mp/+ stem cell function was impaired. It has been shown recently that the Mp mutation involves a chromosome 18 inversion that disrupts the Fbn2 and Isoc1 genes and produces an abnormal, truncated fibrillin-2(MP) protein. This abnormal protein accumulates in the endoplasmic reticulum (ER) of cells that normally express Fbn2 and causes ER stress. It was also shown that Fbn2 is expressed in the corneal stroma but not the corneal epithelium, suggesting that the presence of truncated fibrillin-2(MP) protein in the corneal stroma disrupts corneal epithelial homeostasis in Mp/+ mice.


Epithelium, Corneal/abnormalities , Microphthalmos/genetics , Mutation , Animals , Animals, Newborn , Cell Count , Cell Movement , Epithelium, Corneal/pathology , Female , Heterozygote , Immunohistochemistry , Male , Mice , Mice, Inbred C57BL , Mice, Inbred CBA , Mice, Transgenic , Microphthalmos/metabolism , Microphthalmos/pathology , Microscopy, Confocal
11.
Front Physiol ; 7: 114, 2016.
Article En | MEDLINE | ID: mdl-27065882

The pituitary gland is a primary endocrine organ that controls major physiological processes. Abnormal development or homeostatic disruptions can lead to human disorders such as hypopituitarism or tumors. Multiple signaling pathways, including WNT, BMP, FGF, and SHH regulate pituitary development but the role of the Hippo-YAP1/TAZ cascade is currently unknown. In multiple tissues, the Hippo kinase cascade underlies neoplasias; it influences organ size through the regulation of proliferation and apoptosis, and has roles in determining stem cell potential. We have used a sensitive mRNA in situ hybridization method (RNAscope) to determine the expression patterns of the Hippo pathway components during mouse pituitary development. We have also carried out immunolocalisation studies to determine when YAP1 and TAZ, the transcriptional effectors of the Hippo pathway, are active. We find that YAP1/TAZ are active in the stem/progenitor cell population throughout development and at postnatal stages, consistent with their role in promoting the stem cell state. Our results demonstrate for the first time the collective expression of major components of the Hippo pathway during normal embryonic and postnatal development of the pituitary gland.

...