Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 8 de 8
2.
Nat Biomed Eng ; 7(9): 1170-1187, 2023 09.
Article En | MEDLINE | ID: mdl-37652986

The design of chimeric antigen receptor (CAR) T cells would benefit from knowledge of the fate of the cells in vivo. This requires the permanent labelling of CAR T cell products and their pooling in the same microenvironment. Here, we report a cell-barcoding method for the multiplexed longitudinal profiling of cells in vivo using single-cell RNA sequencing (scRNA-seq). The method, which we named shielded-small-nucleotide-based scRNA-seq (SSN-seq), is compatible with both 3' and 5' single-cell profiling, and enables the recording of cell identity, from cell infusion to isolation, by leveraging the ubiquitous Pol III U6 promoters to robustly express small-RNA barcodes modified with direct-capture sequences. By using SSN-seq to track the dynamics of the states of CAR T cells in a tumour-rechallenge mouse model of leukaemia, we found that a combination of cytokines and small-molecule inhibitors that are used in the ex vivo manufacturing of CAR T cells promotes the in vivo expansion of persistent populations of CD4+ memory T cells. By facilitating the probing of cell-state dynamics in vivo, SSN-seq may aid the development of adoptive cell therapies.


CD4-Positive T-Lymphocytes , Transcriptome , Humans , Animals , Mice , Cell- and Tissue-Based Therapy , Cytokines , Nucleotides
3.
Nature ; 590(7846): 504-508, 2021 02.
Article En | MEDLINE | ID: mdl-33536620

Amplification of chromosomal region 8p11-12 is a common genetic alteration that has been implicated in the aetiology of lung squamous cell carcinoma (LUSC)1-3. The FGFR1 gene is the main candidate driver of tumorigenesis within this region4. However, clinical trials evaluating FGFR1 inhibition as a targeted therapy have been unsuccessful5. Here we identify the histone H3 lysine 36 (H3K36) methyltransferase NSD3, the gene for which is located in the 8p11-12 amplicon, as a key regulator of LUSC tumorigenesis. In contrast to other 8p11-12 candidate LUSC drivers, increased expression of NSD3 correlated strongly with its gene amplification. Ablation of NSD3, but not of FGFR1, attenuated tumour growth and extended survival in a mouse model of LUSC. We identify an LUSC-associated variant NSD3(T1232A) that shows increased catalytic activity for dimethylation of H3K36 (H3K36me2) in vitro and in vivo. Structural dynamic analyses revealed that the T1232A substitution elicited localized mobility changes throughout the catalytic domain of NSD3 to relieve auto-inhibition and to increase accessibility of the H3 substrate. Expression of NSD3(T1232A) in vivo accelerated tumorigenesis and decreased overall survival in mouse models of LUSC. Pathological generation of H3K36me2 by NSD3(T1232A) reprograms the chromatin landscape to promote oncogenic gene expression signatures. Furthermore, NSD3, in a manner dependent on its catalytic activity, promoted transformation in human tracheobronchial cells and growth of xenografted human LUSC cell lines with amplification of 8p11-12. Depletion of NSD3 in patient-derived xenografts from primary LUSCs containing NSD3 amplification or the NSD3(T1232A)-encoding variant attenuated neoplastic growth in mice. Finally, NSD3-regulated LUSC-derived xenografts were hypersensitive to bromodomain inhibition. Thus, our work identifies NSD3 as a principal 8p11-12 amplicon-associated oncogenic driver in LUSC, and suggests that NSD3-dependency renders LUSC therapeutically vulnerable to bromodomain inhibition.


Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/pathology , Histone-Lysine N-Methyltransferase/metabolism , Histones/chemistry , Histones/metabolism , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Nuclear Proteins/metabolism , Animals , Biocatalysis , Carcinogenesis/genetics , Carcinoma, Squamous Cell/genetics , Female , Histone-Lysine N-Methyltransferase/deficiency , Histone-Lysine N-Methyltransferase/genetics , Humans , Lung Neoplasms/genetics , Male , Methylation , Mice , Models, Molecular , Mutation , Nuclear Proteins/deficiency , Nuclear Proteins/genetics , Receptor, Fibroblast Growth Factor, Type 1/deficiency , Receptor, Fibroblast Growth Factor, Type 1/genetics , Receptor, Fibroblast Growth Factor, Type 1/metabolism , Xenograft Model Antitumor Assays
4.
Cancer Cell ; 37(6): 834-849.e13, 2020 06 08.
Article En | MEDLINE | ID: mdl-32442403

Molecular mechanisms underlying adaptive targeted therapy resistance in pancreatic ductal adenocarcinoma (PDAC) are poorly understood. Here, we identify SETD5 as a major driver of PDAC resistance to MEK1/2 inhibition (MEKi). SETD5 is induced by MEKi resistance and its deletion restores refractory PDAC vulnerability to MEKi therapy in mouse models and patient-derived xenografts. SETD5 lacks histone methyltransferase activity but scaffolds a co-repressor complex, including HDAC3 and G9a. Gene silencing by the SETD5 complex regulates known drug resistance pathways to reprogram cellular responses to MEKi. Pharmacological co-targeting of MEK1/2, HDAC3, and G9a sustains PDAC tumor growth inhibition in vivo. Our work uncovers SETD5 as a key mediator of acquired MEKi therapy resistance in PDAC and suggests a context for advancing MEKi use in the clinic.


Chromatin/genetics , Drug Resistance, Neoplasm , Methyltransferases/metabolism , Molecular Targeted Therapy , Pancreatic Neoplasms/drug therapy , Protein Kinase Inhibitors/pharmacology , Small Molecule Libraries/pharmacology , Animals , Apoptosis , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/pathology , Cell Proliferation , Female , Histocompatibility Antigens/genetics , Histocompatibility Antigens/metabolism , Histone Deacetylases/chemistry , Histone Deacetylases/genetics , Histone Deacetylases/metabolism , Histone-Lysine N-Methyltransferase/antagonists & inhibitors , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Humans , MAP Kinase Kinase 1/antagonists & inhibitors , MAP Kinase Kinase 1/genetics , MAP Kinase Kinase 1/metabolism , MAP Kinase Kinase 2/antagonists & inhibitors , MAP Kinase Kinase 2/genetics , MAP Kinase Kinase 2/metabolism , Methyltransferases/antagonists & inhibitors , Methyltransferases/genetics , Mice , Mice, Inbred C57BL , Mice, Inbred NOD , Mice, SCID , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Pyridones/pharmacology , Pyrimidinones/pharmacology , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
5.
Cell ; 172(3): 549-563.e16, 2018 01 25.
Article En | MEDLINE | ID: mdl-29275860

The immune system can mount T cell responses against tumors; however, the antigen specificities of tumor-infiltrating lymphocytes (TILs) are not well understood. We used yeast-display libraries of peptide-human leukocyte antigen (pHLA) to screen for antigens of "orphan" T cell receptors (TCRs) expressed on TILs from human colorectal adenocarcinoma. Four TIL-derived TCRs exhibited strong selection for peptides presented in a highly diverse pHLA-A∗02:01 library. Three of the TIL TCRs were specific for non-mutated self-antigens, two of which were present in separate patient tumors, and shared specificity for a non-mutated self-antigen derived from U2AF2. These results show that the exposed recognition surface of MHC-bound peptides accessible to the TCR contains sufficient structural information to enable the reconstruction of sequences of peptide targets for pathogenic TCRs of unknown specificity. This finding underscores the surprising specificity of TCRs for their cognate antigens and enables the facile indentification of tumor antigens through unbiased screening.


Adenocarcinoma/immunology , Antigens, Neoplasm/immunology , Colorectal Neoplasms/immunology , Lymphocytes, Tumor-Infiltrating/immunology , Receptors, Antigen, T-Cell/immunology , Aged , Animals , Antigens, Neoplasm/chemistry , Cell Line, Tumor , Cells, Cultured , HEK293 Cells , HLA-A Antigens/chemistry , HLA-A Antigens/immunology , Humans , Male , Middle Aged , Peptide Library , Sf9 Cells , Spodoptera
6.
J Clin Invest ; 126(7): 2610-20, 2016 07 01.
Article En | MEDLINE | ID: mdl-27294525

Small-cell lung cancer (SCLC) is a highly aggressive subtype of lung cancer with limited treatment options. CD47 is a cell-surface molecule that promotes immune evasion by engaging signal-regulatory protein alpha (SIRPα), which serves as an inhibitory receptor on macrophages. Here, we found that CD47 is highly expressed on the surface of human SCLC cells; therefore, we investigated CD47-blocking immunotherapies as a potential approach for SCLC treatment. Disruption of the interaction of CD47 with SIRPα using anti-CD47 antibodies induced macrophage-mediated phagocytosis of human SCLC patient cells in culture. In a murine model, administration of CD47-blocking antibodies or targeted inactivation of the Cd47 gene markedly inhibited SCLC tumor growth. Furthermore, using comprehensive antibody arrays, we identified several possible therapeutic targets on the surface of SCLC cells. Antibodies to these targets, including CD56/neural cell adhesion molecule (NCAM), promoted phagocytosis in human SCLC cell lines that was enhanced when combined with CD47-blocking therapies. In light of recent clinical trials for CD47-blocking therapies in cancer treatment, these findings identify disruption of the CD47/SIRPα axis as a potential immunotherapeutic strategy for SCLC. This approach could enable personalized immunotherapeutic regimens in patients with SCLC and other cancers.


CD47 Antigen/metabolism , Immunotherapy/methods , Lung Neoplasms/therapy , Macrophages/immunology , Small Cell Lung Carcinoma/therapy , Animals , Antibodies, Monoclonal/pharmacology , CD56 Antigen/metabolism , Cell Line, Tumor , Cytokines/metabolism , Green Fluorescent Proteins/metabolism , Humans , Lung Neoplasms/immunology , Mice , Phagocytosis , Receptors, Immunologic/metabolism , Signal Transduction , Small Cell Lung Carcinoma/immunology
7.
Genes Dev ; 30(7): 772-85, 2016 Apr 01.
Article En | MEDLINE | ID: mdl-26988419

Pancreatic ductal adenocarcinoma (PDAC) is a lethal form of cancer with few therapeutic options. We found that levels of the lysine methyltransferase SMYD2 (SET and MYND domain 2) are elevated in PDAC and that genetic and pharmacological inhibition of SMYD2 restricts PDAC growth. We further identified the stress response kinase MAPKAPK3 (MK3) as a new physiologic substrate of SMYD2 in PDAC cells. Inhibition of MAPKAPK3 impedes PDAC growth, identifying a potential new kinase target in PDAC. Finally, we show that inhibition of SMYD2 cooperates with standard chemotherapy to treat PDAC cells and tumors. These findings uncover a pivotal role for SMYD2 in promoting pancreatic cancer.


Carcinoma, Pancreatic Ductal/enzymology , Histone-Lysine N-Methyltransferase/metabolism , Pancreatic Neoplasms/enzymology , Animals , Cell Proliferation/drug effects , Cell Proliferation/genetics , Disease Models, Animal , Enzyme Activation/drug effects , Enzyme Activation/genetics , Enzyme Inhibitors/pharmacology , HEK293 Cells , Histone-Lysine N-Methyltransferase/antagonists & inhibitors , Histone-Lysine N-Methyltransferase/genetics , Humans , Intracellular Signaling Peptides and Proteins/metabolism , Mice , Mice, Inbred C57BL , Protein Serine-Threonine Kinases/metabolism , Signal Transduction , Stress, Physiological
8.
Nat Med ; 21(10): 1163-71, 2015 Oct.
Article En | MEDLINE | ID: mdl-26390243

Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal human cancers and shows resistance to any therapeutic strategy used. Here we tested small-molecule inhibitors targeting chromatin regulators as possible therapeutic agents in PDAC. We show that JQ1, an inhibitor of the bromodomain and extraterminal (BET) family of proteins, suppresses PDAC development in mice by inhibiting both MYC activity and inflammatory signals. The histone deacetylase (HDAC) inhibitor SAHA synergizes with JQ1 to augment cell death and more potently suppress advanced PDAC. Finally, using a CRISPR-Cas9-based method for gene editing directly in the mouse adult pancreas, we show that de-repression of p57 (also known as KIP2 or CDKN1C) upon combined BET and HDAC inhibition is required for the induction of combination therapy-induced cell death in PDAC. SAHA is approved for human use, and molecules similar to JQ1 are being tested in clinical trials. Thus, these studies identify a promising epigenetic-based therapeutic strategy that may be rapidly implemented in fatal human tumors.


Adenocarcinoma/drug therapy , Carcinoma, Pancreatic Ductal/drug therapy , Epigenesis, Genetic , Histone Deacetylase Inhibitors/therapeutic use , Proteins/antagonists & inhibitors , Adenocarcinoma/therapy , Animals , Carcinoma, Pancreatic Ductal/therapy , Clustered Regularly Interspaced Short Palindromic Repeats , Humans , Mice
...