Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 11(1): 3678, 2021 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-33574503

RESUMEN

Greenhouse and multi-location experiments were conducted for two consecutive years to investigate the effects of rhizobium on nodulation, biomass production and partitioning of faba bean. Split-plot in randomized complete block design was used for field experiments. Treatments consisted of six rhizobium strains and three faba bean varieties. Peat carrier-based inoculant of each strain was applied at the rate of 10 g kg-1 seed. Non-inoculated plants without N fertilizer and with N fertilizer served as -N and + N controls, respectively. Data on nodulation, shoot dry weight and root dry weight were collected and analyzed. Inoculation of rhizobium significantly increased nodulation of faba bean under greenhouse and field conditions. Location x strain x variety interaction had significant effects on nodulation, dry matter production and partitioning. Rhizobium inoculation increased nodulation, shoot and root dry weights of faba bean across locations. For example, inoculation with rhizobium strains NSFBR-15 and NSFBR-12 to variety Moti resulted in 206.9 and 99.3% shoot dry weight increase at Abala Gase and Hankomolicha, respectively and 133.3 and 70.7% root dry weight increase on the same variety at the same sites, respectively. Nodulation and biomass production depend on the compatibility between faba bean genotype and rhizobium strain and its interaction with soil bio-physical conditions.

2.
PLoS One ; 14(1): e0209260, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30625193

RESUMEN

Two field experiments were conducted at Ellembelle and Jomoro districts in the Western region of Ghana where rubber cultivation is a predominant farming activity. The objective of the study was to assess the effect of rubber and plantain intercropping systems on selected soil properties. The experiment was arranged in a randomized complete block design (RCBD) with 3 replications. The treatments were the sole crop rubber (R), sole crop plantain (P) and three intercrop systems comprising an additive series of plantain: one row of plantain to one row of rubber (PR), two rows of plantain to one row of rubber (PPR) and three rows of plantain to one row of rubber (PPPR). Generally, agroforestry systems improved the soil hydraulic properties considerably, with the highest cumulative infiltration rates of 5.16 and 8.68 cm/min observed under the PPPR systems at the Ellembelle and Jomoro sites, respectively. Microbial biomass C (Cmic), N (Nmic) and P (Pmic) was significantly improved (P < 0.05) under the agroforestry than the monocrop systems. The Cmic, Nmic and Pmic values were highest under the PPPR system at both Ellembelle (Cmic, = 139.9 mg/kg; Nmic = 36.26 mg/kg and Pmic = 87.6 mg/kg) and Jomoro (Cmic = 78.7 mg/kg; Nmic = 80.3 mg/kg and Pmic = 3.45 mg/kg) sites.


Asunto(s)
Producción de Cultivos/métodos , Hevea/crecimiento & desarrollo , Musa/crecimiento & desarrollo , Biomasa , Agricultura Forestal/métodos , Ghana , Suelo/química , Microbiología del Suelo
3.
PLoS One ; 13(12): e0208250, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30566517

RESUMEN

Soil erosion is a multifactor threat to crop production and the environment. Most studies on soil erosion characterization have not focused on soil nutrient loss associated with erosion. The aim of this study was therefore to quantify the magnitude of nutrient loss through soil erosion under different cropping systems and amendments to inform agronomic practices in sub-Saharan Africa (SSA). A field experiment was carried out on runoff plots with different cropping systems (sole maize, sole cowpea, sole maize and maize intercropped with soybean) as main plots and soil amendments (biochar, NPK (Nitrogen +Phosphorus +Potassium) fertilizer, NPK + biochar and a control (no amendment)) constituting the subplots in a randomized complete block design. For each block, a bare plot was included to assess the efficiency of the different crop and soil management practices on soil erosion. The study was carried out in three consecutive cropping seasons in the semi-deciduous forest zone of Ghana. The bare plots had the highest amounts of nitrogen (N), phosphorus (P), and potassium (K) eroded: 33.88, 12.35 and 12.75 kg ha-1 respectively followed by the control plots with magnitude of 20.43, 8.42 and 7.87 kg ha-1 respectively for N, P and K. Sole maize had the highest amounts of nutrient loss: 19.71, 8.12 and 7.27 for N, P and K respectively compared to all the other cropping systems where the losses varied respectively from 12.38 to 17.12, 6.67 to 7.49 and 5.81 to 6.75 kg ha-1 The legume-based cropping systems under inorganic fertilizer and biochar management effectively reduced nutrient loss more than all other treatment combinations. The off-site effect of soil erosion expressed as enrichment ratio (ER) was higher for all plots, which received inorganic fertilizer inputs varying from 1.93 to 3.06 while the other treatments had ERs of 1.51 to 2.03. The ERs of fine soil particles were greater than 1 (ranging from 1.14 to 3.6) being relatively higher than that of coarse particles (sand) with values below 1 (ranging from 0.62 to 0.88). The least cumulative monetary value of nutrient loss (30.82 US$ ha-1) was observed under cowpea cropping system which received NPK + BC treatment. Soil erosion affected directly soil nutrient depletion through nutrient loss; however, integrated soil fertility management associated with legume-based cropping systems can be alternative options to reducing its effects on croplands in SSA.


Asunto(s)
Suelo , África del Sur del Sahara , Productos Agrícolas , Fertilizantes , Ghana , Nitrógeno/análisis , Fósforo/análisis , Potasio/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...