Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Intervalo de año de publicación
1.
Bioengineering (Basel) ; 11(3)2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38534535

RESUMEN

Cilia are biological structures essential to drive the mobility of secretions and maintain the proper function of the respiratory airways. However, this motile self-cleaning process is significantly compromised in the presence of silicone tracheal prosthesis, leading to biofilm growth and impeding effective treatment. To address this challenge and enhance the performance of these devices, we propose the fabrication of magnetic silicone cilia, with the prospect of their integration onto silicone prostheses. The present study presents a fabrication method based on magnetic self-assembly and assesses the interaction behavior of the cilia array with biological mucus. This protocol allows for the customization of cilia dimensions across a wide range of aspect ratios (from 6 to 85) and array densities (from 10 to 80 cilia/mm2) by adjusting the fabrication parameters, offering flexibility for adjustments according to their required characteristics. Furthermore, we evaluated the suitability of different cilia arrays for biomedical applications by analyzing their interaction with bullfrog mucus, simulating the airways environment. Our findings demonstrate that the fabricated cilia are mechanically resistant to the viscous fluid and still exhibit controlled movement under the influence of an external moving magnet. A correlation between cilia dimensions and mucus wettability profile suggests a potential role in facilitating mucus depuration, paving the way for further advancements aimed at enhancing the performance of silicone prostheses in clinical settings.

2.
Bioengineering (Basel) ; 11(3): 1-12, mar.2024.
Artículo en Inglés | CONASS, Sec. Est. Saúde SP, SESSP-IDPCPROD, Sec. Est. Saúde SP | ID: biblio-1537704

RESUMEN

Cilia are biological structures essential to drive the mobility of secretions and maintain the proper function of the respiratory airways. However, this motile self-cleaning process is significantly compromised in the presence of silicone tracheal prosthesis, leading to biofilm growth and impeding effective treatment. To address this challenge and enhance the performance of these devices, we propose the fabrication of magnetic silicone cilia, with the prospect of their integration onto silicone prostheses. The present study presents a fabrication method based on magnetic self-assembly and assesses the interaction behavior of the cilia array with biological mucus. This protocol allows for the customization of cilia dimensions across a wide range of aspect ratios (from 6 to 85) and array densities (from 10 to 80 cilia/mm2) by adjusting the fabrication parameters, offering flexibility for adjustments according to their required characteristics. Furthermore, we evaluated the suitability of different cilia arrays for biomedical applications by analyzing their interaction with bullfrog mucus, simulating the airways environment. Our findings demonstrate that the fabricated cilia are mechanically resistant to the viscous fluid and still exhibit controlled movement under the influence of an external moving magnet. A correlation between cilia dimensions and mucus wettability profile suggests a potential role in facilitating mucus depuration, paving the way for further advancements aimed at enhancing the performance of silicone prostheses in clinical settings.


Asunto(s)
Siliconas , Bioprótesis , Tráquea
3.
Mater Today Bio ; 25: 101000, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38390343

RESUMEN

Using advanced nanotechnology membranes has opened up new possibilities in the field of biomedicine, particularly for controlled drug delivery and especially for topical use. Bacterial cellulose membranes (BCM), particularly, have gained prominence owing to their distinctive attributes, including remarkable water retention, safety, biodegradability, and tunable gas exchange. However, they are aqueous matrices and, for this reason, of limited capacity for incorporation of apolar compounds. Cubosomes are lipid nanoparticles composed of a surfactant bicontinuous reverse cubic phase, which, owing to their bicontinuous structure, can incorporate both polar and apolar compounds. Therefore, these particles present a promising avenue for encapsulating and releasing drugs and biomolecules due to their superior entrapment efficiency. In this study, we aim to extend earlier investigations using polymeric hydrogels for cubosome immobilization, now using BCMs, a more resilient biocompatible matrix. Phytantriol cubosome-loaded BCMs were prepared by three distinct protocols: ex situ incorporation into wet BCMs, ex situ incorporation by swelling of dry BCMs, and an in situ process with the growth of BCMs in a sterile medium already containing cubosomes. Our investigation revealed that these methodologies ensured that cubosomes remained integral, uniformly distributed, and thoroughly dispersed within the membrane, as confirmed using Small-Angle X-ray Scattering (SAXS) and high-resolution confocal microscopy. The effective incorporation and sustained release of diclofenac were validated across the different BCMs and compared with hyaluronic acid (HA) hydrogel in our previous studies. Furthermore, the resistance against cubosome leaching from the three BCM and HA hydrogel samples was quantitatively evaluated and contrasted. We hope that the outcomes from this research will pave the way for innovative use of this platform in the incorporation and controlled release of varied active agents, amplifying the already multifaceted applicability of BCMs.

4.
Langmuir ; 40(4): 2015-2027, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38240211

RESUMEN

Complex coacervates result from an associative phase separation commonly involving oppositely charged polyelectrolytes. When this associative interaction occurs between charged-neutral diblock copolymers and oppositely charged homopolymers, a nanometric aggregate called a complex coacervate core micelle, C3M, is formed. Recent studies have addressed the issue of their thermodynamic or kinetic stability but without a clear consensus. To further investigate this issue, we have studied C3Ms formed by the combination of poly(diallyldimethylammonium) and copolymer poly(acrylamide)-b-poly(acrylate) using different preparation protocols. Dynamic light scattering and small-angle X-ray scattering measurements suggest that these structures are in an equilibrium condition because the aggregates do not vary with different preparation protocols or upon aging. In addition, their stability and structures are critically dependent on several parameters such as the density of neutral blocks in their shell and the ionic strength of the medium. Decreasing the amount of copolymer in the system and, hence, the density of neutral blocks in the shell results in an increase in the aggregate size because of the core growth, although their globular shape is retained. On the other hand, larger clusters of micelles were formed at higher ionic strengths. Partially replacing 77% of the copolymer with a homopolymer of the same charge or increasing the ionic strength of the system (above 100 mmol L-1 NaCl) leads to a metastable state, after which phase separation is eventually observed. SAXS analyses reveal that this phase separation above a certain salt concentration occurs due to the coagulation of individual micelles that seem to retain their individual globular structures. Overall, these results confirm earlier claims that equilibrium C3Ms are achieved close to 1:1 charge stoichiometry but also reveal that these conditions may vary at different shell densities or higher ionic strengths, which constitute vital information for envisioning future applications of C3Ms.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA