Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Chemosphere ; 321: 138069, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36764620

RESUMEN

Worldwide environmental issues have been escalating with the growth of the global economy and become a vital problem. To solve the problems, we require an eco-friendly and sustainable binary catalyst for the degradation of Azo dye pollutants. In this work, magnetically reusable, multifunctional novel Mn-doped CdAl2O4 nanoparticles were effectively fabricated by the co-precipitation approach. It was utilized for the degradation of two Azo dyes, exhibiting 96 and 98% Mn (0.050 M)-doped CdAl2O4 removal rates under visible light illumination, and presenting improved photocatalytic capability than that of pure and other dopants. More notably, the Mn (0.050 M)-doped CdAl2O4 catalyst was recycled using centrifuges without major loss and displays almost similar photodegradation behaviors for six successive runs. According to the ESR measurements, outcome and quenching tests affirmed that .OH- and h+ radicals were better reactive species responsible for Azo dyes removal. A possible photodegradation reaction mechanism underlying the elimination of Azo dyes by Mn (0.050 M)-doped CdAl2O4 catalyst is also proposed. Elaborated analyzes by variable reaction parameters such as the role of reactive species and catalyst dosage, pH, COD and irradiation time in the degradation route was also discussed. We assume that our outcomes will provide novel insights into using a highly effectual Mn (0.050 M)-doped CdAl2O4 catalyst, with possible applications in the treatment of both industrial and domestic wastewater.


Asunto(s)
Iluminación , Nanopartículas , Fotólisis , Colorantes , Luz , Compuestos Azo , Catálisis
2.
Chemosphere ; 323: 138232, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36841458

RESUMEN

Modern-year organic contaminants have been highly observed in ecosystems since they are not removed entirely and remain dangerous. Semiconductor binary oxide photocatalysts have been well accredited as capable technology for ecological contaminants degradation in the existence of visible irradiation. In this research, novel Co ions doped CdAl2O4 materials were fabricated by a facile co-precipitation approach. The fabricated pure and Co-doped CdAl2O4 exhibited the typical peaks of CdAl2O4 with the Eg of 3.66, 3.24, 2.57, and 2.41 eV respectively. The HR-TEM microstructures revealed that the Co (0.075 M) doped CdAl2O4 has rod-like morphology, and some places are spherical with particle sizes reaching 21 nm. The PL peaks of the Co (0.075 M)-CdAl2O4 are much lesser than that of the other dopant and pure CdAl2O4, representing much more effectual separation of generated e- and h+ at the interface which in fact outcomes in superior expected photodegradation behaviours. The Co (0.075 M)-CdAl2O4 catalyst demonstrated the highest performances of 92 and 94% toward the degradation of both dyes, respectively, owing to the lowest e- and h+ recombination rate. The Co (0.075 M) doped CdAl2O4 photocatalyst revealed outstanding reusability and stability under visible irradiation, retaining the performance of about 83 and 86% after the fifth consecutive run of BB and BG elimination. A probable photodegradation mechanism of Co (0.075 M) doped CdAl2O4 was suggested since the photoexcited h+, OH- and O2- species contributed to the removal process, and that was affirmed by the scavenging test and ESR analysis. This research offers new ways to improve the photodegradation performance of the Co-doped CdAl2O4 catalyst that will be employed in pharmaceutical applications and wastewater treatment.


Asunto(s)
Contaminantes Ambientales , Contaminantes Ambientales/química , Cadmio , Fotólisis , Compuestos Azo/química , Cobalto/química , Ecosistema , Catálisis
3.
Artículo en Inglés | MEDLINE | ID: mdl-36714036

RESUMEN

The prevalence, incidence, and severity of a wide variety of diseases and ailments are significantly influenced by the significant disparities that occur between the sexes. The way that men and women react to pharmacological treatment also varies. Therefore, it is crucial to comprehend these reactions in order to conduct risk assessment correctly and to develop safe and efficient therapies. Even from that limited vantage point, the manner and timing of our drug usage might have unintended and unanticipated consequences. There are sex-specific differences in the incidence and mortality of certain malignancies. One of the most important discoveries in cancer epidemiology is the gender inequalities. Cancer incidence differences between the sexes are thought to be regulated at the genetic and molecular levels and by sex hormones like oestrogen. Differences based on sex and gender are among the least investigated factors impacting cancer susceptibility, progression, survival, and therapy response despite their established importance in clinical care. The molecular mechanisms underlying sex differences in particular are poorly known, hence the majority of precision medicine approaches employ mutational or other genetic data to assign therapy without taking into account how the patient's sex may affect therapeutic efficacy. In patients receiving chemotherapy, there are definite gender-dependent disparities in response rates and the likelihood of side effects. This review explores the influence of sex as a biological variable in drug effects or toxicity in oncology.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...